業種・業態「コールセンター」の記事一覧
-
Aiトレンド・特集
【新型コロナ対策】Aiサーモグラフィーで異常体温を瞬時に検知!
現在世界中で猛威を振るっている新型コロナウイルスの感染拡大の影響で、多くの人が集まる店舗や施設、公共交通機関などにおいては、検温を実施しているところも多いでしょう。実際にUNIQLOやGUなどのアパレルショップへ入店する際は検温が実施され、37.5℃以上の発熱がある場合は入店を断られるという仕組みになっていました。また、美術館や大型しょっぴんモールなどでは、Aiカメラの前を通る人々の体温を瞬時に検知し、電子ディスプレイ上に映し出しているという施設もあり、検温の動きが広がってきています。新型コロナウイルスへ感染した時の症状の一つとして発熱があることから検温がクラスター化させないための一つの指標となっているわけです。本記事では、新型コロナ対策において瞬時に多くの人々の検温ができるシステム『Aiサーモグラフィー』や、新しい生活様式においてAiがどのように活躍するのかという話題に視点を置き、言及してまいります。新型コロナ対策で実施されたもの会社員・公務員を対象としたLINEリサーチの調査によりますと、職場における新型コロナ対策の現状は下記のようになっています。【引用元】http://research-platform.line.me/archives/34978692.html3月、2月の調査に比べると、すべての項目において対策が強化されていることがわかり、上位は『マスクの着用の推奨/義務付け』が最も高く6割となっています。次に、『手指のアルコール消毒用品の常備』が約6割弱となりました。さらに、今回3割以上かつ、前回に比べて2倍以上の増加率だったのは、『出社前の検温の推奨/義務付け』(前回16%→今回42%)です。37.5℃以上の発熱が新型コロナウイルスの主な症状の一つであり、感染を食い止めるための指標であることから施設等へ入館する際に限らずオフィスへの出勤時にも実施されるようになってきていることがわかります。Aiサーモグラフィーとは検温といいますと、現在UNIQLOやGUなどに入店する際、高速バスに乗り込む前などに実施されるのはスタッフがお客の額に体温計を当てて一人一人検温を実施するものを思い浮かべる方も多いでしょう。しかし、店舗に人がたくさん入る場合や、バスなどのように時間が迫っている場合には急ぐあまりに正しく検温ができなかったり、業務効率を悪くしてしまう可能性もあります。ひいては、お客の額に体温計を一人一人近づける作業をしているスタッフはお客との距離が一瞬ではあるものの、近くなってしまうため、あまり望ましくありません。そこで利用されるのがAiによる検温です。Aiサーモグラフィーによる検温の特徴人が人に近づいて手動で検温をするとなりますと、感染のリスクをたかめることにもなりかねません。しかし、気温や体温を測るときに利用される『サーモグラフィー』というものがあるのをご存知ですか。Aiサーモグラフィーはオフィスや商業施設など、人の集まる場所の入口に設置することで、自動的に体温を検知することが可能です。また、顔認証AI機能も搭載されているため、予め登録した社員や来訪者の入退室管理や、発熱チェックを行うことで、検温漏れを防ぐこともできます。実際に福岡市立美術館や山口県の下関市にある海響館ではAiによる検温が行われており、福岡市立美術館に関しては電子ディスプレイ上に、個々の体温が映し出されておりました。このように、Aiサーモグラフィーによる検温では、非対面非接触かつ一度に大人数の検温をできるのが特徴です。・Aiサーモグラフィーによる検温のメリットではAiサーモグラフィーによる検温のメリットとは具体的にどのようなことがあげられるのかといいますと、一つは従業員が対面で検温を行う必要がなくなるので業務効率化につながるということや非対面での検温が可能になるという点です。二つ目は、管理者は発熱者のアラートを受け取れることで、効果的な検温活動が実施できるという点になります。学校や大型施設、公共交通機関などに設置することで、スムーズに検温を行うことができます。・Aiサーモグラフィーによる検温のデメリットしかし、Aiサーモグラフィーによる検温は、Aiを搭載したカメラを利用して行うものになりますのでカメラにキチンと映っていなかったり、後ろを向いていたりする場合は正しく検温ができないという可能性もあるのがデメリットとしてあげられるでしょう。また、クリニックや病院などにおける検温は一人一人しっかりと行う必要があるので不向きです。Aiで広がる非接触システムと新しい生活様式コロナウイルスの感染拡大が大々的にニュースなどでも取り上げられる中で、よく耳にするようになった言葉の一つに『新しい生活様式』があります。感染拡大やクラスター化などを防ぐために、リモートワークが推奨されたり、非対面・非接触を推奨されたりなど、これまでの私たちの生活と比べて、テクノロジーの利用シーンが増えてきました。Aiもそれらの技術の一つです。Aiサーモグラフィーをはじめ、人間が行っていた作業をAiシステムに任せることで人間同士が接触して感染拡大の機会を減らすことができるのです。感染症対策の一環ではありませんが、無人店舗なども同様に、Aiなどのテクノロジーを利用した非対面、非接触の買い物であり、新しい生活様式の一つとも言えます。今後はECサイトなどの活用がますます増え、Aiやその他テクノロジーを利用して非対面、非接触が推奨されていくことになるでしょう。まとめ『新しい生活様式』という言葉を至る所で耳にするようになった今、非対面・非接触でのコミュニケーションはもちろんのこと、感染拡大を阻止する検温やソーシャルディスタンスの維持の徹底においてもテクノロジーが広く利用されるようになってきています。今後はAiサーモグラフィーが設置される店舗も多くなってくるでしょうから、見つけた際には試してみてはいかがでしょうか。変わりゆく生活の中で、新しいものに関心を持ち、Aiなどの最新テクノロジーにも気軽に触れていくことが今後の『新しい生活様式』において大切なことであるとも言えます。
-
Aiトレンド・特集
Amazonが開発したAiツール『CodeGuru』とは?
自動でコードレビューをしてくれるサービス「CodeGuru」が話題になっています。機械学習を利用したAIツールで、アプリケーションの最適化、負荷の原因になっているコード行の特定、ソースコードの品質向上、CPU使用率削減などを行ってくれます。Amazon Web Services(以下AWS)から一般提供が開始されたことで、アプリケーション開発者の間で注目を集めています。コストも時間もかかりがちなコードレビューが自動化できれば、アプリケーション開発がかなり楽になるでしょう。そこで今回は、AWSのAIツール『CodeGuru』について、解説していきたいと思います。コードレビューやコストパフォーマンス向上にお悩みの方は、ぜひ目を通してみてください! AmazonのAIツール『CodeGuru』とは?米国時間の6月29日、Amazon Web Services(以下AWS)は「CodeGuru」の一般提供を開始しました。CodeGuruとは、コード品質の改善や、バグや問題防止のためのレコメンデーションAIを搭載した開発者向けツールです。機械学習による最適なパフォーマンスや、コストの最適化、コードレビューの自動化サービスを提供してくれるサービスです。コードの問題を検出して修正方法を示す「Amazon CodeGuru Reviewer」と、アプリケーションの性能最適化を支援してくれる「Amazon CodeGuru Profiler」という二つの機能があります。2019年12月、ラスベガスで開催された「AWS re:Invent 2019」において、すでにサービス自体は発表されていました。Amazonにおける数十万の内部プロジェクト、GitHub上の1万以上のオープンソースプロジェクトのコードをベースにして、機械学習を行ったモデルを用いてコード分析が行われます。開発したアプリケーションを、サーバー上で利用するための一連の作業は「デプロイ」と呼ばれています。一般的にデプロイ後のアプリケーション監視に十分な開発者を見つけるのは、非常に困難だとされています。またバグやパフォーマンスの問題が発生しない保証もありません。しかしCodeGuruなら、既存の統合開発環境(IDE)と統合して、人気の高いオープンソースプロジェクト1万以上ののAIアルゴリズムを利用することが可能です。書かれているコードを評価するコンポーネントで、これまで困難でコストがかかるとされていた問題を解決してくれます。CodeGuruの登場により、今後のアプリケーション開発は、かなり楽に行えるようになるでしょう。 AIツール『CodeGuru』にできることCodeGuruには、以下の二つの機能があります。 CodeGuru Reviewer「CodeGuru Reviewer」は、コードレビューの自動化や、コードの問題検出を行ってくれる機能です。コードレビューの自動化においては、AWSが今まで培ってきた技術力や機械学習を用いて、コードレビューを行ってくれます。主に以下のような、本番での問題につながる可能性が高い問題点にフラグを立ててくれるでしょう。・ベストプラクティスからの逸脱を検出・ページネーションの欠落を検出・バッチ処理でのエラー処理 などソースコードのプルリクエストを自動的に分析することで、重要な問題を発見。コードの欠陥を解決する推奨事項も提示してくれます。たとえば以下のような事柄の発見や、解決方法を提案してくれるでしょう。・スレッドセーフの問題・サニタイズされていない入力・資格情報など機密データの不適切な処理・リソースリークのチェック などまたコード内のAWS APIとSDKの使用状況についてコードレビューし、最新のAWSの機能を利用しているかも判断してくれます。これにより、ベストプラクティスを常に最新の状態に保つことが可能となるでしょう。CodeGuru Reviewerがサポートする言語は、2020年7月時点でJavaのみとなっています。CodeGuru Profiler「CodeGuru Profiler」では、オブジェクトの過剰な再現、非効率なライブラリの使用、過剰なロギングといった問題における推奨事項を提供してくれる機能です。本番環境で実行しているアプリケーションの、さまざまな節約可能な部分を発見できるようになります。アプリケーションのCPU使用率と遅延特性を分析して、もっとも実行コストがかかっているコードの行を検出してくれます。またアプリケーションのパフォーマンス問題も自動的に識別。CPU仕様率、計算コスト削減、性能改善の方法なども提示してくれるでしょう。 これらの分析結果はグラフとして可視化されるので、ユーザーはどの点を改善すべきか簡単に把握できます。推奨事項の中には、非効率なコードを実行し続けることによるコストの見積もりも含まれています。2020年7月時点でのサポートは、Javaおよびその他のJVM言語となっています。 『CodeGuru』のメリット「CodeGuru」を使用するメリットについて見ていきましょう。コストがかかりすぎている部分を発見できるコードとアプリケーションが効率的であればあるほど、実行コストは減少していきます。CodeGuruを使用すれば、アプリケーションの節約可能な部分が簡単に発見できるようになります。パフォーマンスの問題、修正方法、推奨事項、非効率なコード実行にかかるコストの見積もりを提供してくれます。また修正に優先順位をつけることも可能なので、非常に便利だと言えるでしょう。パフォーマンスの最適化が可能AWS Lambda、Amazon EC2、Amazon ECS、AWS Fargate、AWS Elastic Beanstalk、オンプレミスで実行するあらゆるアプリケーションプロファイラーエージェントをJVMに添付EC2、コンテナ、オンプレミスアプリケーションLambdaをインスタンス化する場合には、1行の変更でLambdaコード内にエージェントが添付されます。コードの問題を本番稼働前に発見できるCodeGuruは、AWSが何十年に渡り蓄積した知識と技術に基づいたトレーニングが実行されています。コードレビューの場合、GitHub、GitHub Enterprise、Bitbucket Cloud、AWS CodeCommitなどにコードをコミット。Amazon CodeGuru Reviewerが既存のコードベースを分析して発見しにくいバグ、重大なコードの問題などを高い精度で識別してくれるでしょう。それらの問題を修正する方法も提供し、連続するコードレビューのベースラインを作成してくれます。異常の早期検出と通知が可能Amazon CodeGuru Profilerは、パフォーマンスの異常を自動的に検出してくれます。異常が検出された場合、10分以内に指定先へと通知が送信されます。早期検出と通知により、本番環境で問題が深刻化する前に防止できるでしょう。ユーザーへ影響を与える前に、修正するための十分な時間が得られます。 『CodeGuru』のデメリット「CodeGuru」を使用する上での問題点についても紹介させていただきます。プロファイルできるアプリケーションの種類が限られている2020年7月現在、プロファイルできるアプリケーションの種類は限定されています。Amazon CodeGuru Profilerは以下のアプリケーションで動作するので、留意しておいてください。・Amazon EC2、Amazon ECS、Amazon EKSで実行されるコンテナー化されたアプリケーション・AWS Fargateで実行されるサーバーレスアプリケーションでホストされるアプリケーション対応リージョンが限定されている2020年7月現在、AWS コンソールで表示が確認できたのは以下のリージョンです。・アジアパシフィック (シドニー)・欧州 (アイルランド)・米国西部 (オレゴン)・米国東部 (バージニア北部)・米国東部 (オハイオ)このように現時点では国外リージョンとなっていますが、AWSコンソールからは利用できるようになっています。 まとめ今回はAWSが提供開始したAIツール「CodeGuru」について解説しました。CodeGuruはコードレビューの自動化や、コードの問題検出、実行コストの削減などを行ってくれます。今まで困難とされていたことがお手軽に行えるようになるので、今回の一般提供開始は非常に注目を集めています。Amazonによると社内では8万件のアプリケーションの最適化に利用され、数千万ドルの節約につながったとされています。現在は国外リージョンとなっていますが、今後の動向からは目が離せません。新たな情報が発信され次第、本サイトでも情報を提供していきたいと思います。
-
未分類
スマホに眠る昔の写真も今風に高画質化が可能!『photoRefiner』とは
ふと昔のスマホに電源を入れたとき、昔の思い出の写真を見て懐かしく思うという方も多いのではないでしょうか。しかし現在のスマホのカメラ技術はひと昔前よりも格段に進歩しており、当時の写真を見ると、非常に画質が悪いと感じてしまうケースも少なくないはずです。そこで今回は、写真、イラスト、画像などを高画質化できるAiシステム、『photoRefiner』をご紹介してまいります。photoRefinerとは?そもそもAiは画像認識や映像認識を行うことができる技術であり、今回ご紹介する『photoRefiner』にもその技術が活用されています。いわば、写真やイラストなどの画像を美しく高画質化することができるAiシステムといえるでしょう。これまでの高画質化システムは、画像を引き延ばして中間を補填する技術で賄っておりました。スマホアプリで試すことができる気軽なモノも同様です。しかしPhoto Refinerは、低解像度画像から推測される高解像度画像を学習したAiが粗い画像だけから美しい高解像度な画像を生成する技術ですので、これまでの技術とは比較にならないほど美しく高画質化することができます。画素数16倍に高画質化が可能Photo Refinerは、ピクセル数を縦、横4倍に拡大して16倍に画質を上げることができます。それだけでなく、従来では高画質化の難しかった特大サイズの写真に関しても高速に生成することができます。例えば、昔の写真をポスターにしたいといった場合でも、高画質化ができれば最近に撮影したようにきれいな画像を使用したポスターが完成するわけです。Aiのディープラーニングを用いた技術Photo Refinerは世界最先端・最高精度の技術で高画質化を実現しており、この技術は特許も申請中であるといいます。特にこの技術は、Aiのディープラーニング(深層学習)を活用したことで、従来の高画質化技術では不可能だった品質で高画質化ができるようになりました。従来の技術では、縦横1.1倍にする程度が、品質を劣化させずに高画質化できる限界でしたが、Photo Refinerでは、独自技術を研究開発して利用しているので、高品質に縦横4倍に高画質化することが可能です。Photo Refinerが可能にする課題解決画質が良くなかった画像を高画質化できることで、コンテンツにも幅が生まれビジネス広告の幅を広げるというのは言うまでもありません。ここからは実際にPhoto Refinerが可能にする現状の課題解決法について解説していきます。印刷時に画像が荒くなるのを防ぐパソコンで画像を見たときには高画質な画像で表示されているように見えたのに、いざ用紙にプリントすると、荒い画像で印刷されてしまったという経験はありませんか?実際、モニター上で画像をきれいに見るには72dpiの解像度があれば十分きれいに見えるのですが、紙に印刷するとなると300dpi近くの画質が必要になります。そうしたことで、モニター上と用紙とで画質のギャップが生まれてしまうわけです。しかし、Photo Refinerでは最大で16倍に高画質化することができますので、紙の上でもきれいな画像を印刷することができるようになります。広告素材で表現の幅を広げることができる例えば、通常の画質のよい写真でも、拡大すると画像が荒くなってしまうため、拡大した画像を使いたいが断念しているといった経験をしたことがある方も少なくないはずです。例えば化粧品の広告宣伝において、目の周りを拡大してアイシャドウの美しさを表現したいとおもっていたとしましょう。画質が荒ければ、見る人にとってはアイシャドウが美しいかどうかもわからないし、そもそも広告として成り立ちません。そこでPhoto Refinerを使用すれば、自由自在に引き延ばしたり拡大したりして広告表現の幅を広げることができます。web素材の高画質化もまた、近年では電子公告や動画広告などもあるように、デジタルの広告が広まってきています。そうしたweb上の広告に利用する画像についても高解像度の画像を使用できることで、画質を理由に魅力的な写真をあきらめるリスクを防ぐことができるでしょう。まとめ本記事では、画像の高画質化が可能なAiシステム、『Photo Refiner』について解説いたしました。たしかに、昔の画像をよみがえらせて何かに活用したい、マーケティングに利用したいなどと一度は感じたことがあるはずです。特に、一般の方々が昔の画像を必要とする場面といえば、結婚式のムービーなど、思い出の写真を集めたスライド等を制作する場面なのではないでしょうか。お子様の小さいころの写真を集めて20歳のプレゼントにと考えている親御さんが活用するのも大変喜ばれると思います。マーケティングにおいては、画質が高いことによって訴求力もより高まりますので、効果的な宣伝を行うことができるようになるでしょう。映像の高画質化については下記の記事にて詳しく解説しておりますのでご覧ください。
-
Aiの基礎知識
【機会学習とは】3種類の学習方法や使い分け、5つのアルゴリズムにも注目!
Apple製品の代名詞と言えば、やはり「iPhone(アイフォン)」ですよね。このiPhoneですが、「Siri(シリ)」による音声コントロールに始まり、顔認証技術の「Face ID(フェイスアイディー)」や、指紋認証システムの「Touch ID(タッチアイディー)」など、実はAiの技術を結晶した製品だということをご存知でしょうか。今回は、Aiにおける基礎知識として「機械学習」にスポットをあてて、その種類やそれぞれの学習アルゴリズムなどについてをわかりやすく解説し、Siriが私たちの顔や声を正確に認識できる謎に迫っていきましょう。機械学習とはAiは、入力された膨大なデータを瞬時に学習・分析することで、それらのデータ群に内在する共通項や規則性を発見し、最適な回答を見つけ出したり、カテゴリ別に分けることなどを得意としています。こうしたAiによる一連の学習活動を「機械学習」と呼び、この機械学習には、入力するデータのタイプや環境状況に応じて、主に3つの種類が存在します。機械学習の3つの種類①教師あり学習教師と言うと学校の先生などをイメージするかもしれませんが、Aiの分野における教師とは「正しいデータ(=以下、正解データ)」を意味する言葉となります。コンピュータに対して大量のデータと一緒に正解データを入力することで、コンピュータは入力データと正解データそれぞれのデータの特徴を読み取ります。この学習を繰り返すことで、コンピュータは入力されたデータのうち「どのデータが誤りで、どのデータが正しいか」を正確に判断できるようになるのです。②教師なし学習教師なし学習とは、先ほどの教師あり学習とは異なり、膨大な正解データの分析を必要としない入力データのみの学習パターンになります。正解データを学習しない代わりに、膨大な入力データそれぞれが持つ構造や特徴を分析し、カテゴリ別にグループ分けを行ったり、要素の簡略化を行ったりします。入力されたデータに対してコンピュータ自身がそれぞれのデータの共通項や規則性を見つけ出し、カテゴリ別に分けていく学習パターンです。③強化学習強化学習とは、簡単に言うと「コンピュータがとる行動の方針を最適化する仕組み」を学ぶという、トライ&エラー型の学習手法になります。コンピュータが良い行動をとると高い報酬を、逆に悪い行動をとると低い報酬を与えるよう行動の結果ごとに報酬の値を設定し、その報酬を「最大化」するように機械は試行錯誤を行ってくれるため、コンピュータ自身が自分の学習を強化していくことで精度を上げていくという仕組みになります。さらに現在では、この強化学習と「ディープラーニング(深層学習)」という学習手法を組み合わせた「深層強化学習(DQN)」が、強化学習の中でも主流となっています。囲碁の世界チャンピオンを倒した囲碁Ai「AlphaGO(アルファゴー)」にも、この深層強化学習が活用されています。機械学習における『教師あり学習』と『教師なし学習』の使い分け教師あり学習は、入力データと正解データをセットで読み込ませるため、ある特定の画像やテキストなどを判別する際に役立ちます。例えば、がん患者の大小さまざまな細胞画像を正解データとすることで、受診者の細胞を正確に判別することが可能になるため、がんの早期発見や早期治療に役立ちます。対して教師なし学習は、正解となるデータが存在しないため、膨大な数のデータをそれぞれの共通項に分類したり、規則性に沿ってカテゴライズする際に重宝します。これは、企業の保持している顧客データなどのビッグデータに応用することで、顧客のニーズやユーザー行動の分析が可能になるため生産性の向上に繋げることができます。このように、教師あり学習と教師なし学習それぞれにメリットとデメリットが存在するため、導入の際にはAiの利用用途を吟味した上で検討しましょう。機械学習で利用されるアルゴリズム上述した3種類の機械学習手法ですが、その中でもさらに細かいアルゴリズムによる分類が存在します。ここからは、機械学習の際に用いられる、主なアルゴリズム5つを確認していきましょう。分類(=教師あり学習)教師あり学習の一つで、「分析したい入力データが属するカテゴリーやクラスが何なのか」を判定する手法。回帰(=教師あり学習)教師あり学習の一つで、「売り上げや成長率といった数量を扱う場合の学習方法」で、過去の顧客データから新規顧客が今後どのくらい訪れるのかなどを予測することができます。クラスタリング(=教師なし学習)教師なし学習の一つで、「類似するデータ同士を機能やカテゴリごとに分けて集める」という、回帰の教師なしバージョンのような学習手法です。次元削減(=教師なし学習)教師なし学習の一つで、機械学習でも特徴量が不必要に多すぎると、いわゆる「次元の呪い」という現象が起こり、精度が悪くなることがあることから、データの次元(特徴量の数)を減らす手法になります。異常検知機械の故障やデータ分析の外れ値などのコンピュータ数値における異常を検知・推測する際に利用する手法です。■まとめ一口に機械学習とは言っても、Aiの利用目的や導入先の環境などによって適切な学習方法や採用すべきアルゴリズムは異なります。Aiの導入を検討されている場合、まずは導入の前に、自身のAi活用の目的をしっかりと確認することが重要です。そもそもAiには「何ができて何ができないのか」を深く理解することで、導入による無駄な工数の発生やリスクを回避することにも繋がるでしょう。
-
Aiの基礎知識
【Aiとディープランニングの関係性】深層学習について知っておくべき3つのこと
Ai(人工知能)による機械学習機能の一つとして広く知られるようになった「ディープラーニング(深層学習)」ですが、近ごろではニュースやバラエティ番組など、さまざまな場面で耳にする機会が増えました。しかし、ディープラーニングはどうして必要なのか、ディープラーニングによってどのようなことが可能になるのかなど、その仕組みや実態を正確に把握しているのは、ごく一部の愛好家や研究者だけです。今回は、ディープラーニングがこれほどまでに注目を集めている理由と、ディープラーニングについて知っておくべきポイントについて、3つの観点からわかりやすく解説していきます。ディープラーニングが注目されている理由ディープラーニングとは、コンピュータが自動的に大量のデータを読み込み、それらのデータ群の中から一定の規則性や特徴を発見する技術のことです。このディープラーニングの発達により、従来からヒトの手以外では実現不可能とされてきたさまざまな業務の「Ai代行」が実現できるようになり、近年注目を集めているというわけです。ディープラーニングが必要な理由では、今後の私たちの生活の中で、Aiによるディープラーニングが必要不可欠なものとされている理由は一体どのようなところにあるのでしょうか。それを語る上で欠かせないキーワードが、Aiそのものの「高速化」と「高精度化」です。近年、ディープラーニングは、コンピュータ技術の進歩とネットワーク通信技術の発達により、かつてないほど大規模かつ高速な処理能力を有するようになりました。また、画像や音声の認識においては、もはや人間の能力を超えるレベルにまで到達しており、日々その進化を遂げています。技術革新による「高速化」と「高精度化」が実現したことで、従来までは不可能とされていたあらゆるタスクの処理が可能となり、医療や農業、製造業や接客業など、さまざま分野において、その活躍が期待されるようになりました。Aiとディープラーニングの関係Aiとは「Artificial intelligence(アーティフィシャル・インテリジェンス)」の略で、日本語では「人工知能」と訳します。あらかじめ何らかのプログラムを施さなくても、コンピュータに大量のデータを学習・分析させることで、自動的に法則性やルールを発見して、ある課題に対する予測や判断を下すことができる技術のことを指します。こうしたAiによる一連の動作は、一般に「機械学習」と呼ばれ、その中でも特に、より深く複雑な情報処理を得意とする領域が「ディープラーニング」と呼ばれ、日本語では「深層学習」の名前で知られています。ここからは、ディープラーニングについて知っておくべき3つのポイントについて、わかりやすく解説していきます。ディープラーニングについて知っておきたい3つのことディープラーニングの仕組みそもそもディープラーニングとは、「ニューラルネットワーク」と呼ばれるヒトの脳神経(ニューロン)の構造を模した思考プロセスをベースに設計された技術です。ニューラルネットワークとは、入力層、隠れ層、出力層の順番で、入力された情報に対しての回答を行うシステムになります。しかし、シンプルなニューラルネットワーク構造では単純な情報しか処理できないため、より複雑な情報処理を行うために層の数を増設したもの(=多層化したもの)を「ディープニューラルネットワーク」と呼びます。ディープラーニングは、こうしたディープニューラルネットワークの技術を採用することで、今までの機械学習よりも分析精度を飛躍的に向上させることに成功しました。ディープラーニングの活用の仕方ディープラーニングが得意とするタスクはさまざまですが、代表的な例としては下記の4つが挙げられます。【画像の認識】膨大な画像データを学習させることで、その画像が何の画像であるのかを判断することができます。【音声の認識】対象の音声データを学習させることで、その音声が誰のものであるのかを認識することができます。【文章や言語の理解】文章や言語を大量に学習させることで、文脈から文法などの規則性を発見し、中身の内容を理解することができます。【未来の予測】過去にある膨大な事例を参照することで周囲の環境や状況を分析し、ある事柄における未来の予測を打ち立てることができます。ディープラーニングでできること例えば、ディープラーニングを自動運転の分野に応用することで、各種標識や歩行者の検知を高速かつ正確に行うことができるため、事故の減少に繋げることができます。医療研究の分野においては、がん細胞の発見にディープラーニングを用いることで、より高速かつ確実にがん細胞を検出することが可能になりました。これまで、人間の医師では気が付かなかったような微妙な細胞の変化を検出できるようになったため、がん細胞の早期発見と早期治療へ役立てることができるのです。ディープラーニングの活用事例Googleの活用事例Aiによるディープラーニングの技術はすでに幅広い分野で実用化され、私たちの生活を支えています。例えば、Google(グーグル)が提供している「TensorFlow(テンソルフロー)」は、深層学習のために設計されたニューラルネットワークソフトウェアで、オープンソースとなっているため誰でも無償で利用することができます。https://www.youtube.com/watch?v=XkKxSAb4EAw上記の動画では、膨大な画像データをディープラーニングさせることで、農作物の仕分けの自動化と農場における業務負荷の軽減に成功しています。Amazonの活用事例また、Amazon(アマゾン)が手がけるショッピングストア「Amazon Go(アマゾン・ゴー)」では、機械学習されたAiカメラを店舗内に設置することによって、レジを利用した従来の決済システムを廃し、完全無人化の実現に成功しました。https://www.youtube.com/watch?v=NrmMk1MyrxcAi技術を駆使することで、わずらわしいレジでの待ち時間をなくすとともに、店舗における従業員不足の解消や人件費などのコスト削減に繋がるとして注目を集めています。まとめ生活に広く浸透するようになったAiテクノロジー。昨今では、Aiが人間のもつ知能レベルを大幅に超える「シンギュラリティ問題」や「2045年問題」などが指摘されるようにもなりました。便利な技術である反面、運用を間違えてしまうと人類にとって未知の危険を及ぼす可能性があるとも言えるでしょう私たち一人一人がAiに関する知識と理解を深めることで、社会全体におけるITリテラシーの向上が必要になっているのかもしれません。
-
Aiトレンド・特集
【Ai活用法】ビジネスにおいてAiはどのように活躍している!?Aiの活用事例9選
近年、Ai技術の参入によって、ますます複雑化と高速化の波が押し寄せるマーケティングの分野ですが、Aiのビジネス活用がこれほどまでに重要視されている理由は、一体どのようなところにあるのでしょうか。本記事では、ビジネスにおけるAiの具体的な活用事例をご紹介していくとともに、今後のデジタルマーケティングの動向についてもわかりやすく解説していきたいと思います。Ai活用がビジネスで重要化している理由少子高齢化が加速する現代の日本においては、企業の人材不足にともなう長時間労働などの、いわゆる「ブラック企業問題」が社会的なテーマとして大きく取り上げられるようになりました。こうした諸々の経営課題を一挙に解決させる手段として、近年注目を浴びるようになったのがAiという存在です。実際にAiを導入した企業の中でも、業務の効率化や労働環境の改善に成功したという事例は数多く報告されていますが、例えばウェブサイトの運営にAiを活用した場合は、アクセス解析機能でサイトの改善点を瞬時に提案してくれたり、ユーザー行動の分析を通して顧客のニーズを把握してくれたりと、ビジネスにおける諸問題を解決していく上でもAiという存在は今後ますます必要不可欠なものになっていきます。ここからはより具体的に、ビジネスにおけるAiの活用事例をシーン別に分けて9つほどご紹介していきたいと思います。ビジネスにおけるAi活用事例ユーザー体験の向上ネット通販やオンラインショッピングなどで洋服や靴を購入しようと思ったとき、なかなか自分のイメージする商品が見つからずに苦労したという経験がある方も多いのではないでしょうか。アパレルブランドの各社ECサイト(=商品の販売を目的とするウェブサイト)で導入されている画像検索システム「Syte(サイト)」は、株式会社ギャプライズが提供するAi搭載型の画像検索エンジンです。使い方はシンプルで、ユーザーが自分好みの洋服の画像をアップロードすると、色や形などの外観情報からその洋服の系統を瞬時に分析し、類似商品を提案してくれる画期的なAiサービスになります。テキストによる検索ではなく、画像を用いた検索手法のため、ユーザーにとってより直感的で的確な検索結果の表示が可能となりました。スペインを代表する大手ファッションブランド「Venca(ヴェンカ)」では、このビジュアル検索Aiの導入後、コンバージョン率が3.8倍も向上したという報告も上がっているほど、信頼性の高いAiツールです。Aiで市場データを分析商品に対するユーザーレビューやSNSにアップされた口コミなどにAiの感情分析機能を活用することで、顧客ニーズの把握などの市場データの分析に役立てることができます。Aiの感情分析機能とは、入力されたテキストからユーザーの快不快の感情を分析し、スコアリング(=数値化)する機能のことです。数百から数千件にもおよぶ膨大なユーザー投稿を人間が手作業で分析するというのは、あまり現実的ではありませんよね。こうした作業にAiを用いることで分析時間を短縮することできますし、最近ではテキストだけではなく、音声や表情の認識技術を利用してユーザーの感情を分析できるサービスも登場しています。Aiによるテキスト要約インタビューの文字起こしや長時間にわたる会議の議事録作成など、手間のかかる単純作業にはAiによるテキスト要約機能を活用しましょう。音声データのテープ起こしはもちろんのこと、重要な部分を簡潔にまとめてくれるテキスト要約サービスも登場しているため、こうした作業を頻繁にされている方であれば、積極的に利用していきたいですね。Aiによる営業社外での商談における具体的な会話の内容など、ブラックボックス化しやすい営業活動を可視化させ、コンバージョンアップに繋げることができるAiツールが注目を集めています。こうしたサービスは一般に「SFA(Sales Force Automation)」と呼ばれる営業支援Aiシステムで、営業活動の自動化を目的として顧客データの管理や営業担当者のマネジメントなど、私たちに代わって幅広い業務を自動的に行ってくれます。Aiが自動的に確度の高い見込み客をリストアップしてくれたり、担当者ごとの営業活動を可視化して改善点の提案や商談へのアドバイスをしてくれたりと、生産性の向上が期待できるでしょう。Aiによる株価予測株式投資によって資産を運用されている方は多いなか、近ごろではAiによる株価予測システムが登場し、大きな話題を呼んでいます。株価予測システム「Phantom株価予報AIエンジン」は、Aiを搭載した株価予測システムで、その的中率は80%を超えるとも言われています。将棋や囲碁のAi棋士と同様に、株式投資における膨大な勝利データの深層学習(=ディープラーニング)を通して、特定銘柄の将来株価を予想したり、空売りや押し目買いのタイミングまで的確に提案してくれたりと、熟練のトレーダーと比べても勝るとも劣らない優秀なAiツールです。Aiを搭載した会計ソフトの活用毎月の経費計算や決算の報告など、企業にとって必要不可欠な会計ソフトという存在ですが、最近ではAi搭載型の会計ソフトの登場によって業務の効率化と省人化によるコスト削減が進められています。会計ソフトはAiとの相性が良く、領収書やレシートなどの書類の読み取り機能や自動仕訳機能、さらには機械による決算チェックのため、人為的なミスが発生しにくく正確性が高いというメリットがあります。製造業での不良品検知食品工場の生産ラインや農業仕分けの分野においては、良品と不良品それぞれの大量の画像をAiカメラに読み込ませることで品質管理の自動化に成功しています。Google(グーグル)の開発する「TensorFlow(テンソルフロー)」は、機械学習のために設計されたオープンソースソフトウェアで、法人個人を問わず無償で利用することができます。https://www.youtube.com/watch?v=XkKxSAb4EAw製品の良し悪しを人間が正確に見分けられるようになるためには、長年にわたる業務経験と専門的な知識が必要になってきますよね。しかし、こうした仕分け作業にAiの画像分析技術を用いることで、製品の判別を迅速かつ的確にこなしてくれるため、生産現場における人員不足の解消とスタッフの業務負荷の軽減に繋げることができます。無人店舗でのAiカメラAmazon(アマゾン)が運営する無人小売店舗の「Amazon Go(アマゾン・ゴー)」は、店舗内にAiカメラを設置することによって、決済システムの簡略化を始めとする完全無人化を実現しました。Aiカメラを導入することで、商品在庫が少なくなった場合には商品の補充を促したり、不審人物を検知した際には自動的に通報したりなど、店舗運営における業務効率化を見込むことができます。また、購買層の年齢や性別、滞在時間やリピート率などの顧客データの収集も得意としているため、マーケティング戦略を立てる上でも力強い見方となってくれるでしょう。サイバーセキュリティ―を強固にするAi新型コロナウイルスの定額給付金をめぐる詐欺サイトの多発が大きな社会問題となりましたが、近ごろではこうした詐欺サイトへの対抗策としても、Aiテクノロジーが活用されていることをご存知でしょうか。詐欺サイトや違法サイトはその性質上、サイトアドレス(=URL)が頻繁に変更されてしまうため、犯人の追跡や特定に時間がかかる傾向にあります。そこで、Aiツールが常時インターネット上の詐欺サイトを監視することで、アドレス変更があった際には自動追尾してくれるため、サイバーセキュリティの分野においても活躍が期待されています。Aiでビジネスチャンスがつかめる可能性もこのように、Aiを活用することで、顧客データの収集から消費者行動の分析まで、実に様々なデータ群の解析が可能となりました。とりわけ、これまでヒトの手だけでは管理しきれなかった「ビッグデータ(=膨大な数の顧客データや蓄積したユーザー行動)」が、Aiの普及によって瞬時に解析できるようになったため、これまで取り扱いに困っていた様々なデータ群から新たなビジネスモデルを発掘したり、私たちが見落としていた消費者ニーズの発見に役立てることができるかもしれません。まとめ現代経営学の父と呼ばれるピーター・ドラッカー氏は、マーケティングのゴールを「販売を不要にすること」と述べています。この発言の骨子は、従来からある一連のマーケティングフロー(=企画・営業・販売・CSなど)を徹底的に分析し、いわゆる「モノが売れる仕組み」を確立させることで、販売の自動化を目指すというところにあるのですが、Aiの台頭によってこうした構想がますます現実味を帯びるようになりました。マーケティング戦略の見直しやコンバージョンアップを検討されている方などは、今回ご紹介したAiの活用事例を参考に、商品サービスへのAi導入も是非一度、検討してみてはいかがでしょうか。
-
Aiトレンド・特集
Aiロボットがすでに活躍している分野はどんな分野!?Aiロボット活用の10選
昨今、新型コロナウイルスの感染拡大にともなって、さまざまな業界分野で非接触型のAiロボットを活用した業務効率化が注目を集めています。今回は、実際にAiロボットが活躍している業界10種を、その具体的な導入事例とともにわかりやすくご紹介していきます。AiロボットとはAiロボットとはその名が示す通り、Ai(=人工知能)を搭載したロボットのことを指します。あらかじめロボットに対して何らかのプログラムを入力しなくても、目的(=ゴール)を人間が設定してあげるだけで、Aiがその目的に向けてトライ&エラーを繰り返し、自動で最適な回答を探し出してくれる機械学習(=ディープラーニング)を得意としています。そんなAiテクノロジーですが、実は私たちが日々こなしている多くの業務との相性が良く、近ごろではさまざまな分野で応用されるようになってきました。Aiロボットが活躍している分野ここからは、各業界で活躍しているAiロボット10選を、導入事例などとともにわかりやすく解説していきます。農業農業の課題をITの力で解決する「AGRIST株式会社」日本の農業全体における就業人口は、昭和60年と比較するとおよそ4割程度の335万人ほどとなっており、年々減少傾向にあります。また、農業従事者の平均年齢は67歳とも言われており、後継者不足や生産ノウハウの消失など、人材の確保と高齢化への対策が急務となっている分野になります。そんな逆境の中で、Aiテクノロジーを駆使して日本の農業課題を解決しようと取り組んでいる企業が、宮崎県児湯郡(こゆぐん)に拠点を構える「AGRIST株式会社(以下、アグリスト)」です。アグリストは、Ai搭載型の自動収穫ロボットを活用し、収穫にかかるコストや労働負荷の低減を目指すとともに、農業の担い手不足の解決に向けて積極的なチャレンジを行っています。また、クライアントの農家の意見を取り入れながらハードとソフトの両方を農場で設計するため、より実用的でユーザーファーストな製品づくりを可能にさせています。製造業片手だけでルービックキューブを解く「dactyl」OpenAIが開発している「dactyl(以下、ダクティル)」は、ヒトと同じ5本の指を備え持つAiロボットハンドです。ルービックキューブを片手で解くことができるほど、手先が器用なロボットハンドであるため、半導体や基盤回路の製造などの繊細な作業が要求される製造業において注目を集めています。飲食業おかずの盛り付けだってAiロボットにおまかせ「Foodly」人型協働ロボット「Foodly(以下、フードリー)」は、株式会社アールティが設計するお弁当のおかず盛り付けロボットです。フードリーは、従来より自動化が難しいとされてきた、Aiによるお弁当のおかず盛り付け作業を、ヒトと隣り合わせで行うことができる協働型のAiロボットになります。業界初の「不特定物のばら積み取り出し機能」の実現によって、工場ライン全体の従業員コストの削減、人材教育、品質管理、業務の効率化などの面において幅広く貢献しています。医療Aiを搭載した介護支援ロボット「Aeolus Robotics」サンフランシスコで生まれた「Aeolus Robotics(以下、アイオロスロボ)」は、Aiを搭載した人型介護支援ロボットです。このアイオロスロボは、頭部のメインカメラからヒトやモノを検知したり、左右2本のアームで指示されたモノを持ち運ぶことが可能な汎用型のロボットです。介護の現場におけるさまざまな指示に対応できるよう、柔軟で臨機応変な設計が施されている点が魅力でしょう。物流ニトリも導入した自動搬送ロボット「Butler」オンラインショッピングの需要の拡大にともない、物流倉庫の現場では業務フローの自動化や業務効率の向上が急がれています。家具メーカーであるニトリの倉庫内で運用されている「Butler(以下、バトラー)」は、株式会社ホームロジスティクスが設計したAi搭載型の自動ピッキングロボットです。https://www.youtube.com/watch?v=l446cwpqADsサーバーから受信した顧客の注文内容に沿って倉庫内の商品を自動的に運搬してくれる画期的な運搬ロボットで、作業効率が4.2倍に上昇したという報告も上がっています。バトラー内部には赤外線センサーが搭載されているため、ヒトやモノを走行中に検知することができ、倉庫内の間取りを自動的にマッピングして自律的に動きまわることが可能です。ホテルハウステンボスのロボット接客ホテル「変なホテル」長崎県のハウステンボス内に位置する「変なホテル」は、「ワクワクと心地よさ」をコンセプトに、先端技術をふんだんに導入して建てられた世界初のロボットホテルです。大手旅行代理店エイチ・アイ・エスの子会社が手がける「変なホテル」の最大の特徴は、ホテル内のメインスタッフが全てAiロボットであるという点です。ロビーでのチェックインから、室内のルームサービスまで、Aiロボットが全自動でサポートしてくれる名前の通りの「ちょっと変わった」面白いホテルです。警備可愛い見た目と高度なセキュリティ「ugo」ミラ・ロボティクスが開発する「ugo(以下、ユーゴー)」は、オフィスビル警備などのビルメンテナンス業界で注目されている次世代型の警備アバターロボットです。アバターロボットとは人間が遠隔で操縦できるロボットのことで、本体に内蔵されたカメラからビルの中を確認することができます。本体に搭載された2本のアームでエレベーターを呼び出し、各階の警備をしたり、Aiによる学習機能で頻繁に利用する定型動作を自動化することができます。建設清水建設の次世代建築生産システム「シミズ・スマート・サイト」清水建設が長年に渡って培ってきた建設技術ノウハウを最先端の科学技術に結晶させた「シミズ・スマート・サイト」は、建物の3Dモデリング技術(=BIM)とAiテクノロジーとを融合させた自律型の建設支援ロボットです。かなり大規模な「3Dプリンターのような機械」と説明した方がイメージが湧きやすいかもしれません。人間にとって負荷の大きい重労働や繰り返し作業などを、Aiが自分で判断し、自分で作業を行ってくれるという自律型の建設支援ロボットになります。接客もはや説明不要のAiロボットの代名詞「Pepper」ソフトバンクが提供する人型Aiロボット「Pepper(以下、ペッパー)」ですが、最近では病院の待合室やファミレスの受付など、多くの場所で目にする機会が増えたのではないでしょうか。ヒトへの接客が得意なペッパーですが、近ごろでは教育、医療、福祉など、ベースシステムの優秀さから、さまざまな分野での活躍が期待されています。観光多言語でのコミュニケーションに対応したAi接客システム「AIさくらさん」ティファナドットコムが開発した「AIさくらさん」は、音声やテキストを用いて、社内ヘルプデスク、コールセンター業務、インバウンド接客など、さまざまな業務をヒトに変わって行ってくれる多言語対応Aiアシスタントサービスになります。最近ではサーモグラフィーカメラを搭載することで非接触での検温機能を搭載するなど、病院や施設エントランスでの活用が注目されています。Aiロボットは今後必須になるのか非常に便利なAiロボットですが、導入によって全ての工程をいきなり自動化してしまうと、かえってフォローが必要になる場合があり、作業効率を悪化させてしまうという危険性があります。導入の前に、まずは全体の業務フローをしっかりと理解し、どの部分がボトルネックになっているのかを把握することで、ヒトが行った方が良い作業なのか、それともAiで自動化した方が良い作業なのかを判断しましょう。適材適所という言葉の通り、ヒトが得意とするところとAiが得意とするところはそれぞれ異なるため、Aiの導入によって現状の抱えている課題が本当に解決できるのか、まずは適切に吟味することが重要です。まとめ私たちの生活に広く溶け込むようになった人工知能の技術。Aiを導入することで得られるメリットは、作業の効率化、人件費の削減、業務フローの単純化など、その恩恵は計り知れません。しかし、十分な検討なしに導入してしまうと、かえって業務効率の悪化を引き起こしてしまったり、工数を増加させてしまったりという懸念点があることも事実です。ヒトとAi、それぞれの得手不得手をしっかりと理解し、互いに共生できる社会の実現を目指していくことが大切になってくるでしょう。
-
Aiトレンド・特集
デジタルマーケティングにおいてAiはどのように活躍する?
先日、除湿器を購入しようとインターネットで「除湿器 オススメ 安い」と検索をしたところ、その日からインターネットを利用するたびに大量の除湿器の広告が表示されるようになってしまいました。こうしたウェブ広告は「ディスプレイ広告」と呼ばれ、ユーザーの検索履歴に基づいて、興味のありそうな商品をAiが自動的に選定し表示させる広告機能です。今回は、このようなデジタルマーケティングにおけるAi導入の可能性と、そのメリットやデメリットについてご紹介いたします。デジタルマーケティングとは?そもそも「マーケティング」とは、商品サービスの企画から開発、販売、分析改善などのあらゆる企業活動を指し、その概念はしばし「より多くの商品が大量かつ効率的に売れる仕組みをつくること」と解釈されます。そのなかでも「デジタルマーケティング」とは、様々なデジタルメディア(Webサイト、Google広告、SNSなど)を通して行われるマーケティング手法の総称で、近年、パソコンやスマートフォンをはじめとする電子デバイスの普及にともなって、その存在が重要視されるようになりました。伝統マーケティングにはどのような問題があるのか前述のように、今やマーケティングの主流はアナログからデジタルのフィールドに移り変わろうとしているなか、従来より行われてきた伝統的なマスメディア中心のマーケティング手法(=折り込みチラシやテレビCMなど)の問題点は、一体どのようなところにあるのでしょうか。アナログマーケティングの代表例である「テレビCM」を例に挙げて、3点ほどご紹介していきます。伝統マーケティングの代表例「テレビCM」の問題点①双方向性の欠如まず一つ目として、情報発信のベクトルが企業側から消費者側への一方向のみとなり、ユーザーとの双方向な関係性を構築しにくいという点が挙げられます。加えて、「レビュー」や「口コミ」などのユーザー体験が拡散されにくいため、商品やサービスへのフィードバックが回収できず、サービスの分析や改善に時間がかかってしまいます。②膨大な広告コスト二つ目に、限られたチャンネル数のなかで貴重な放送枠を割く都合上、他のメディアと比べても放映権や制作コストなどで広告費が高騰しやすいという点です。また、せっかく莫大な広告費をかけたのにも関わらず、費用対効果がわかりにくい傾向にあるため慎重に検討する必要があり、サービスリリースまでのスピード感を損なう恐れがあります。③効果測定ができないそして三つ目は、広範囲(=マス)なユーザーに対して画一的な宣伝を行うため、何人のユーザーに対してどのくらいの効果があったのかなど、具体的な数字としての広告効果を把握しにくいという点です。Webの登場とマーケティング世界におけるインターネットの歴史は1958年に先端技術を軍事利用への転用を研究する組織が発足、その後1960年代のパケット通信の研究に始まり、今では様々な情報が国境の垣根を超えて瞬時にやり取りされるようになりました。日本でのインターネット検索サービスの歴史や広告の変化日本においての検索サービスとしては1996年4月に、国内初の商用検索サイト「Yahoo! JAPAN」がスタートし、翌年の1997年5月には、インターネットショッピングモール「楽天市場」が開始され、Webマーケティングという概念が本格的に形成されるようになります。当初はバナー広告による集客が主流とされましたが、その後はアフィリエイト広告や検索エンジンからの流入、ブログやSNSなど、Webの発展とともにマーケティングもその形を柔軟に変え、進歩を続けています。ここからは、デジタルマーケティングを語る上では欠かすことのできない、「メディアの3タイプ(=トリプルメディア)」の概要と、その特徴やメリットデメリットについて解説していきます。メディアの3つの種類①オウンドメディアオウンドメディアとは、その名の通り自社のウェブサイトやSNSアカウントのような、自身(=own)が所有しているメディアを指します。認知されるまでにある程度の時間は必要ですが、管理や運営に融通が効くため、コントロールが可能容易で、SEO(=検索エンジン最適化)がしやすいというメリットがあります。②ペイドメディアペイドメディアとは、料金を支払う(=pay)ことで利用できるメディア全般のことで、いわゆる宣伝広告を指すメディアチャネルになります。もちろん運用には一定のコストがかかりますが、利用者数の多いメディアに広告が掲載されれば、短期間で多くのユーザーに対して認知させることができます。③アーンドメディアアーンドメディアとは、商品の販売を主目的としたものではなく、消費者の信頼を得る(=earn)ことを目的とするメディアのことで、第三者のSNSやブログなどがこれに該当します。効果の予測や測定が難しい反面、第三者による投稿は客観的な情報として信頼を得やすく、自動的な営業ツールとして機能してくれるのがメリットです。Aiや機械学習を活用したデジタルマーケティング昨今では、こうした一連のデジタルマーケティングをAiの技術を応用して取り組む企業も増えています。株式会社WACULの提供する「AIアナリスト」は、マーケティングに特化したAiツールであり、Webサイトのアクセス解析を通してサイト全体の改善点を指摘してくれます。参照:AIanalystまた、サイト分析だけではなく、接客の分野においてもAiが活用され始め、サイトを訪れたユーザーに対して自動で問い合わせや商品提案などの接客を行ってくれる「チャットボット」も広がりを見せています。デジタルマーケティングにAiを活用するときの注意点十分なデータ量が必要人工知能というものは与えられた膨大なデータを瞬時に分析することが得意ではありますが、データがない状態でゼロから何かを生むことはできません。例えば、サイト分析やコンバージョンアップにAiを利用したいのであれば、そのサイトの訪問者のうち、平均滞在時間はどのくらいか、どのポイントで離脱しているのか、などの具体的なデータの蓄積が必要となるでしょう。Aiは補助的な手段Aiはあくまでも課題を解決するための補助的な手段であって、すべてをAiに任せておけばいいという万能のものではありません。まずはAi導入の前に、達成したい目的は何なのか、作業全体で効率化したい部分を明確にし、最終的にそれらの課題はAiを導入することで改善できるのかを考える必要があります。Aiの導入そのものが目的にならないよう、現状と目的を把握したうえで導入を検討しましょう。まとめ昨今ますます広がりを見せる企業のAi導入。マーケティングから接客の分野まで実に幅広い業務を私たちの代わりにこなしてくれる便利なツールとも言えるようになってきました。しかし、改善に必要なデータ量が不足していたり、具体的な目的がわからずに導入することでしてしまうと逆に失敗してしまうケースもあります。自社のマーケティングにAiを導入しようと検討されている方は、本記事を参考にして、より適切な導入・運用をしていただければと思います。
-
Aiトレンド・特集
チャットボットとは?チャットボットのメリットと導入するときのポイント
みなさんはウェブサイトなどを閲覧しているときに「画面の端にチャットを入力するポップアップが出てきた」という経験はありませんか?あれは「チャットボット」と言って、私たちがチャットで入力した質問に対して、Aiオペレーターが自動応答してくれるサービスです。テクノロジーの発展とともに日々進化を続けているAiの技術ですが、近ごろでは様々な商品やサービスに導入され、私たちの暮らしに広く溶け込むようになりました。その中のひとつが、このチャットボットです。今回は、チャットボットの概要から、チャットボットをビジネスやサイト運営に活用する上でのメリットとポイントについて、わかりやすくご紹介していきます。チャットボットとはチャットボットとは、その名のとおり「チャット(=対話)」と「ボット(=ロボット)」を掛け合わせたツールのことで、狭義には人間が入力した文字に対して、広義には発言した音声に対して、自動的に回答を行うAiサービスの総称になります。最近では様々な企業でチャットボットサービスが提供されています。有名なところで言えば、Appleの開発するiPhone搭載の「Siri」や、AmazonのAiスピーカーに内蔵されている「Alexa」などもチャットボットのひとつであり、みなさんも一度は耳にしたことがある、または使ったことがあるという方が多いのではないでしょうか。チャットボットの5つのメリット前述したとおり、チャットボットとは人間の投げかけた質問に対して、Aiが自動で応答してくれる便利なサービスですが、ビジネスの現場で運用する際には一体どのようなメリットがあるのでしょうか。ここからは、サイト運営におけるチャットボットの導入メリットと、そのポイントについて解説していきます。カスタマーサポートの業務効率化コールセンターなどで実際によくあるものとしては、契約中の顧客に対するサポート業務が日々の業務を圧迫しているという事例です。特に中小規模の場合は、新規顧客の獲得業務とカスタマーサポート業務を分業せずに兼任している場合も多く、担当者の業務を圧迫していることが懸念されます。そんなときに役立つのが、チャットボットを利用したカスタマーサポートです。参照:SoftBank上記はソフトバンク公式サイトのチャットサポート画面になりますが、請求料金の確認や契約プランの変更などもワンストップでウェブ完結させることができるため、現場の業務負荷を最小限に抑えるとともに、生産性の向上も見込むことができます。・顧客との接点の増加電話やメールを用いた問い合わせと比較した場合、チャットの最大の利点のひとつに「心理的なハードルの低減」が挙げられます。みなさんも何かの商品を購入する際に、「ちょっとだけ気にはなるけれど、わざわざ電話やメールで問い合わせまでするのは面倒」と感じる場面がありますよね。特に、LINEやSNSなどのチャットに慣れ親しんだ若年層がターゲットとなるサービスの場合には、私たちが想像している以上に、電話やメールそのものに対してのストレスケアをサイト設計段階から意識しなければなりません。参照:総務省上図は2017年までの各媒体別(=電話、SNS、メール)のコミュニケーション手段の推移(=総務省調べ)です。この調べによると10代~20代の若年層は、そのほとんどがLINEやSNSでの連絡が中心となっており、電話やメールの積極的な利用者はほとんどいないことがわかります。サイト上にチャットボットを設置し、問い合わせへの心理的なハードルを低下させることで、今まで眠っていた新規顧客との接点の増加につなげることができます。・Web上からの流入を見込むことができるサービスサイトにチャットボットのサービスが組み込まれていることで、疑問点や不安解消の解決手段があるという点が強みにもなるでしょう。こうしたサービスがあることを認知させることで、ユーザーの次回以降のアクセスにつなげることも大いに期待できるはずです。・新規顧客の獲得直接電話をしたり対面で時間を費やして相談するよりも、手軽に問い合わせができるチャットボット。ユーザーにとって手っ取り早く問題を解決できるため、サービス購入や契約にもつながる可能性が高まります。チャットツールに慣れ親しんだ若い世代を中心に、これまで獲得できなかった層を新規顧客として獲得する手段としても有効でしょう。・Aiによるユーザーのニーズ分析チャットボットサービスは主に、Ai搭載型のサービスとシナリオ型(=Ai非搭載型)のサービスの大きく分けて二種類が存在します。特に注目したいAi搭載型は、顧客との対話記録をデータベースに蓄積するため、対話の回数を重ねるごとに回答精度が上がったり、ユーザーの入力した質問からニーズを自動的に分析してくれたりと、サービスの改善や新商品の開発などのマーケティング分野において、大きな力を発揮してくれます。チャットボットを導入するときのポイント「運用コストが安いものを選ぶ」チャットボットを導入するときに気になるのは、やはり運用コストの面なのではないでしょうか。回答精度や機能性などによって価格帯はバラバラですが、初めて利用する場合には初期費用無料のサービスをオススメします。もし、思っていたような成果が出なかったとしても、リスクを最小限に抑えられますし、お試しキャンペーンなどを実施しているサービスもありますので、とりあえず使ってから判断したいという方にオススメです。「目的に合わせた機能性で選ぶ」先ほども述べたとおり、チャットボットにはAi搭載型とシナリオ型の二種類が存在します。Ai搭載型はデータの収集までにある程度の時間がかかる点と、運用コストが高いサービスが多い点がデメリットとして挙げられますが、回答の精度が正確で幅広い質問に回答することができます。対してシナリオ型は、人間があらかじめ設定しておいたシナリオに沿って回答する仕組みです。自由な受け答えはできませんが、比較的リーズナブルに運用できますので、質問や顧客対応の種類が限られている場合に有効でしょう。まとめサービスサイトや独自のメディア運営において陥りがちなのが、閲覧はされているもののなかなかコンバージョンが上がらない、という問題です。チャットボットを導入することで、気軽に資料請求できる環境構築が可能になるため、途中離脱を抑えながら問い合わせ数の増加などのコンバージョン改善が期待できるでしょう。本サイトでも成果報酬型チャットボットサービス「コンバージョンあがるくん」をはじめとした便利で効率化をはかれるサービスを様々ご紹介しています。問い合わせ獲得時のみに料金が発生する仕組みの安心できるサービスとなっていますので、是非一度、チェックしてみてはいかがでしょうか。
-
Aiトレンド・特集
働き方改革を促進するAiシステム『コンバージョンあがるくん』とは?
昨今、日本においてはライフスタイルの変化にともなう「就業ニーズの多様化」の問題や、少子高齢化にともなう「生産年齢人口の減少」の問題など、労働環境を取り巻く数多くの課題が山積みになっています。こうした背景のもと、日本政府は2019年4月1日に、働き方改革関連法案の一部を施行し、一億総活躍社会の理念の遂行と、より自由で多様な就業形態の実現を推進してきました。しかし、現状の生産性を維持しながら労働時間の短縮や業務効率の向上をはかっていくということは、なかなか並大抵のことではありません。本記事では、この「働き方改革」の内容を解説するとともに、労働環境の改善を促進させる便利なAiツール「コンバージョンあがるくん」をわかりやすくご紹介していきます。働き方改革とはさて、近ごろよく耳にするこの働き方改革ですが、そもそもどのような改革なのでしょうか。厚生労働省の発表した内容によると、「働く方々がそれぞれの事情に応じた多様な働き方を選択できる社会を実現する働き方改革を総合的に推進するため、長時間労働の是正、多様で柔軟な働き方の実現、雇用形態にかかわらない公正な待遇の確保等のための措置を講じます。」参照:厚生労働省とあります。つまり、「常態化した長時間労働を解消し、多様な働き方を推進することで労働人口の確保と労働環境の改善を目指していく」というのが、本改革の骨子となっているわけです。では、具体的にどのようにすれば、現状の生産性を維持しながら長時間労働を改善させることができるのでしょうか。ここからは、企業の働き方改革を後押ししてくれる便利なAiツールについてご紹介していきたいと思います。コンバージョンあがるくんとは?「コンバージョンあがるくん」とは、「低コストとシンプルな機能性」をコンセプトに開発された、「完全成果報酬型のチャットボットIVR(自動電話受付)システム」で、中小規模のサイト運用者でも手軽に導入できるコンバージョン向上ツールになります。C-bot(チャットボット):チャット形式のクラウド型ウェブ接客ツール参照:Wiz cloudI-bot(IVR/自動電話受付):24時間365日の自動音声応答サービス参照:Wiz cloud・コンバージョンあがるくんのポイントチャットボットサービスの「C-bot」は、ウェブサイトからの資料請求やよくある問い合わせなどのウェブ接客を、Aiがチャット形式で自動応答してくれるサービスになります。対して、IVR(自動電話受付)サービスの「I-bot」は、電話での注文や予約などを、人間に代わって自動で行ってくれるAiツールになります。チャットと電話の両方をAiが全自動で対応してくれるため、ホームページからの問い合わせや予約に対して、24時間365日、いつでもどこでも柔軟なお客様対応が可能になります。参照:コンバージョンあがるくん・コンバージョンあがるくんの使い方ブラウザから直感的に閲覧・編集ができるよう、わかりやすいUI(=ユーザーが目に触れる部分のデザイン)で、シンプルかつ機能的にデザインされているため、専門的な知識がない方でも業者に依頼する必要がなく、運用コストの面でも大幅な経費削減につながります。また、IVR機能のなかのひとつである「あふれ呼IVR」を利用することで、電話が集中して繋がらなかったお客様に対して、折り返しの予約を自動で受け付けてくれるため、ビジネスチャンスを逃すことなく効率的に運用することができます。・コンバージョンあがるくんでCVRがあがる理由チャットボットサービスの「C-bot」は、使い慣れたチャット形式による入力方式のため、従来のメールフォームなどと比較した場合、資料請求や問い合わせへの心理的ハードルが大きく下がり、サイト全体の離脱率の改善に大きく貢献します。特に、チャットに慣れ親しんだ若年層がメインターゲットのウェブサイトであれば、電話やメールフォームだけでは途中離脱のリスクが高まってしまいますので、積極的に導入していきたい機能ですね。IVR(自動電話応受付)の「I-bot」は、24時間365日の自動音声対応が可能になるため、例えば、営業時間外やピーク時間帯などの電話対応が難しい場面において、機会損失のリスクを最小限に抑えることができます。人員不足や長時間労働に課題を感じている現場であれば、環境改善とコンバージョンアップの両方に効果があるでしょう。コンバージョンあがるくんのメリット①「人員不足の解消」注文予約からよくある問い合わせまで、今までは人間が担当していた大部分を、今後はAiが自動で応対してくれるため、個々の業務負担が緩和され効率的に運用することができます。②「労働時間の短縮」機会損失のリスクから長めに設定していた営業時間も、チャットボットやIVRの導入により24時間365日の自動対応が可能になるため、ワーク・ライフ・バランスを意識した働き方改革が実現できます。③「手軽に導入できる」成約件数に応じた完全成果型のシステムに加えて導入時の初期費用も無料のため、初めてのチャットボットで費用対効果が心配という方でも手軽に導入することができます。コンバージョンあがるくんについてはAiチョイスへ昨今では、Apple社の提供する「Siri」や、Amazonが手がける「Alexa」など、音声アシスタントやAiコンシェルジュといった存在は、広く人々の生活に浸透する時代となりました。民間にも広く普及するようになったAiサービスですが、せっかくならビジネスの現場においても、もっと上手に活用したいものですよね。働き方改革はしたいけれど日々の業務で手がまわらない、サイト全体のコンバージョンを向上させたい、何から始めればいいかわからない、そんな方は、今回ご紹介した「コンバージョンあがるくん」などを始めとしたチャットボットの導入を検討してみてはいかがでしょうか。