業種・業態「製造業」の記事一覧
-
Aiトレンド・特集
Aiカメラによる検温、顔認証でコロナリスク対策
新型コロナウイルスの感染拡大防止対策により、施設や店舗に入る前、出勤時等では検温の徹底をしているというところも多いのではないでしょうか。こうした取り組みは感染防止対策の観点から今後も広がっていくことが予想されます。そうした中、最近では、Aiカメラによる非接触の検温ができるシステムの利用が広がってきているようです。Aiカメラが一体どのように検温を行うのか?本記事ではコロナリスク対策における大役を担うAiカメラについて解説してまいります。Aiカメラとはそもそも、Aiカメラとは何なのかAiカメラでできることとはいったいどういったことがあるのか、あまり詳しく知らないという方もいらっしゃるでしょう。Aiカメラとは、実に、Aiを搭載したカメラのことで、Aiによる顔認証、追跡機能等があることから、高度な防犯カメラとして利用されることもあります。AiカメラにできることAiカメラでは、画像解析による犯人の特定や人物認証による検知が可能なため、犯罪の未然防止につながります。最近の話題でいえば、AmazonGOをはじめとした無人店舗の防犯対策として利用される例です。Aiカメラで怪しい人物を検知すると、追跡することができたり、売れている商品を分析、欠品の商品の検知やアラートを流したりすることができます。他にも、自宅に設置してよじ登りなどの不信行為を検知して管理者に知らせることも可能です。Aiカメラによるコロナ対策このように、Aiカメラは画像解析による人物認証や、異常検知などが得意な監視カメラになります。これまで基本的には『防犯』として利用されていたものの、最近では体温検知機能を兼ね備え、コロナウイルス感染防止対策として利用され始めています。Aiカメラによる検温Aiカメラによる検温は基本的に赤外線を利用したサーモグラフィーを活用したもので、管理者側は管理モニターで異常体温の方がいないかどうかをチェックすることができます。中には、モニターをお客側に見えるように設置していて、顔を近づけると、体温がモニターに表示されたり、マスクをしていなければマスクの着用を促したりすることができるものもあるようです。Ai顔認証で音声アラート通知アイリスオーヤマが新型コロナ対策として新たにラインナップした、個人認証と発熱者検知が同時にできる『顔認証型AIサーマルカメラ』は、Aiアルゴリズムを搭載し、事前設定よりも高い温度や事前登録していない個人を検出した場合に画像と音声アラートにより即座に通知することができます。その体温検知速度は0.2秒、顔認証精度は99%と業界最高クラスを実現しており、店舗等の入り口で通りすがっただけでもほぼ正確に体温検知をすることができるでしょう。また、管理人がモニター前に常駐しておくことが難しくても、異常検知をした場合は音声アラートにより即座に通知を送ることができますので、退出を促すなり、もう一度検温を行うなり、対処することができます。モニター上に可視化で安心特に、従来のようなスタッフが出入口などで検温を行うというシステムですと、実際皆が平熱であるのか、心配になる方もいらっしゃるでしょう。また、従業員と来客の距離が縮まってしまうのも気になります。しかしAiカメラを利用することで非接触の検温が実現する上に、モニター上で可視化されるため、誰もが安心することができるといえます。コロナ対策だけじゃないAiカメラの使い道新型コロナウイルス感染防止対策として、検温などはこれからも継続して行われていくかもしれませんが、実はこれらのAiカメラの使い道は、もちろんコロナ対策に限りません。ここからは、コロナ対策以外でのAiカメラの今後の使い道について解説していきます。顔認証による不法侵入対策Aiカメラは機種によっては約数万人の顔を記憶することができます。ですので、もしかりに事前登録をしていない人が敷地内、施設内に侵入してきたときのために、防犯対策として利用を継続することもできるということです。これは、勤怠管理システムと連動して、システム上で勤怠管理をするときなどにも役に立ちます。マスク着用者のみの入場を許可新型コロナウイルスが世界的に流行したことにより、これまでマスク着用の文化がなかったような欧米等でもマスク着用が当たり前になってきました。コロナウイルスが収束しても、様々な感染症の感染を防ぐために、マスク着用が推奨されることも予想されます。Aiカメラは、マスク着用者のみの入場を許可したリ着用強制モード等にして、オフィスフロアや、施設の出入口に利用したりすることも可能です。クリニックや飲食店等にも利用することで、クラスター発生を防いだり衛生管理の徹底に役立てたりすることができるでしょう。スマートロックと連携また、スマートロック等の電気錠と連携し、入退出を顔認証で行うことも可能です。スマートロックは現在分譲マンションに限らずオフィスから個人宅まで様々な場所で利用されています。スマートロックなどの防犯システムと、Aiカメラを同時に利用することでさらにセキュリティを強化することができるでしょう。まとめAiカメラは、本来では無人店舗などの防犯対策として徐々に利用が広まっていっていたところでしたが、今回のコロナリスク対策として、導入を決心した施設も多いのではないでしょうか。非対面、非接触での検温ができるということはもちろんのこと、マスクを着用していない人への着用の催促、異常検知アラートなどが流れるのは、管理者側としてもうれしいメリットとなるでしょう。そして、アフターコロナで検温などを強要されなくなったとしても、スマートロックなどと連携して効果的に利用することができますので、決して無駄にはなりません。施設の検温活動が業務を圧迫しているという方、検温をスムーズに行いたいという方はぜひAiカメラの導入を検討してみてはいかがでしょうか。
-
未分類
Ai人材育成策『AI Quest』とは?
日本では中小企業の約7割が人手不足であるといわれています。これまでも、人手不足問題に関しては、コラムでAiが人間と同様に働くことで、人権費を削減できたり、作業効率をアップすることができたり、というところに焦点を当てて解説をしてきました。一方で、人手不足問題が拡大している理由としては、『優秀な人材が育たない』『教育者がいない』等も挙げられます。要は、仮に人手として名乗りを上げたものがいたとしても、その人材が企業において役に立つか立たないかは別問題であり、即戦力となり得ないために新しい人材として迎え入れることができないといったことです。そうして、教育者もおらず、人材も育たなければ企業として成長したり前に進んだりすることもできずにいずれ廃業、後継者不足、、といった問題を抱えかねないということになるわけです。そうした中、近年ではAiの実装や普及につなげる『Ai人材』の開発が進められています。そこで本記事では、経済産業省が推進するAi人材育成策『AI Quest』について解説してまいります。経産省が推進する『AI Quest』とはAI Questとは経済産業省が推進するAi人材育成のための事業です。Aiが人材不足の解決を目的とし、2019年に発表された「AI戦略2019」に基づいて策定されました。AI Questは『ケーススタディを中心とした実践的な学びの場』であると位置づけられており、従来の人材育成の手法とは違って、企業の実際の課題に基づくケーススタディが提示され、参加者同士が互いにアイデアを出し合い、試し、学び合うのが特徴です。そのことを通じてAi活用による課題解決方法を学ぶと同時に、実際のプロジェクトに関わることで得られる『知恵』を身につけていきます。AI Questが誕生した背景AI Questは人材の不足を解決するという目的で誕生しました。近年、Aiの技術は、通信技術の進歩もあり驚異的なスピードで発展を続けています。しかし、その一方で、日本はAi関連技術者の数はもちろんのこと、Aiに関する基礎的リテラシーを習得している学生の数もまだまだ足りていない状況です。Ai先進国ともいわれる中国はAi分野を専門的に学習できる環境が整っており、Ai技術の発展も世界各国と比べてもスピードが早い現状となっています。それだけ、教育者が集まっているということですし、教育をするためのデータがある、そして、学べる環境があるというこ都になります。政府が提言する『AI戦略2019』は、Ai人材を育てるための『教育改革』を第一の戦略目標に設定し、次に産業闘争力を強化するための『社会実装』につなげていくことを次の目標としています。具体的には、2025年までにデータサイエンス・Aiを理解し、各専門分野で応用できる人材を年間25万人育てること、データサイエンス・Ai駆使してイノベーションを創出し、世界で活躍できるレベルの人材を2,000人発掘・育成することなどを掲げています。AI Questはそれを踏まえた新たな形での産業政策です。AI Questの目的、そして開発された背景は人材不足の解消、そして人材育成を通したAi実装を実現することの2つです。Ai人材を育て、それをAIの実装・普及につなげることが重要な課題であり、目指すべきゴールだと示されています。Ai人材を育成するメリットAiは人に代わっていろいろな業務を行うことができる非常に優秀な最新テクノロジーの一つです。では、Ai人材を育成し、Aiの普及を促進するメリットとはいったいどのようなことがあげられるのでしょうか。人手不足の解消まずは、Ai人材を実現する目的の一つでもある、人手不足の解消ができるという点です。人手不足が解消されれば、おのずと、日本の中小企業の7割が抱えている悩みが解決されます。つまり、人手不足による廃業などが実質的になくなるでしょう。Ai普及につながるAiの知識を持った人物が多く存在するようになればおのずとAi機器も幅広い業種で利用されるようになるでしょう。そうすると、これまでAi等のテクノロジーと縁のなかった企業もAiを取り入れるきっかけとなり、Aiが爆発的に企業に普及する可能性もあるかもしれません。新しい業種の誕生先ほど冒頭部分でも申し上げた通りに、中国にはAiを専門に研究している人材が多いためにAiの普及が早いとされています。日本でも同様にAi人材が多く現れれば、Aiを利用した新しい業種等も誕生することとなるかもしれません。Ai人材の育成に向けた課題とデメリットとはいえ、Ai人材を育てる手法の一つとして、課題解決型学習(PBL:Project Based Learning)が有効であるとのコンセンサスが得られつつあります。例えばNECはAi人材の育成にPBLを採り入れており、『座学によるAi研修だけでは、ビジネスの現場で活躍できるAi人材を育成できないことが分かってきた』(NECの孝忠大輔AI人材育成センター長)としています。要は、Ai人材一人を育てるのに、1人の教師がつかなければならないということです。その点、Ai人材同士が自ら課題を求め、解決していくような新たな成長方法を確立させていかなければなりません。そういった環境を整えたり、Ai人材を育成して、企業はどのようにAiを利用していくのか等、プロセスを構築しておく必要があるといえるでしょう。まとめ日本もだんだんとAiの普及が進んでいっているとはいえ、やはり世界各国の進捗状況には劣る部分があるものです。それは何よりもAiに関して知識のある人材が少ないこと、専門的に勉強するような施設があまり存在しないことが1つの要因としてあげられるのではないでしょうか。しかも、先日わが国では『スーパーシティ法案』といって、Aiなどのテクノロジーを利用した便利な社会を実現するための法律が可決されました。今後さらにITやAiなどのテクノロジーが多くの場面で利用されていくことになるでしょう。Ai人材の育成はもちろんのこと、Aiについては一般人も基礎知識としてあたまにいれておく必要がありそうです。
-
未分類
ビッグデータとは?ビジネスへの活用例をご紹介
最近ビジネスの世界では当たり前のように利用されるようになった『ビッグデータ』という言葉ですが、実際はビッグデータがどのように活用されているのかなど詳しく知らないという方も少なくないのではないでしょうか。また、ビッグデータを利用するとビジネスにどのようなメリットをもたらすかなども知らない方が多いでしょう。そこで本記事ではビッグデータに関する基礎知識と、ビッグデータの活用例などを解説しながら、ビジネスにおけるビッグデータ活用のメリットについて解説してまいります。ビッグデータとは『ビッグデータ』とは、漠然と『大量のデータを分析すること』などと認識している方もいらっしゃるかもしれませんが、実際ビッグデータについてどのくらいの容量を超えた時点で『ビッグ』とするなど、具体的な定義が決まっていません。ただ、ビッグデータについて、総務省の『平成24年版情報通信白書』では『事業に役立つ知見を導出するためのデータ』としています。つまり、『今までとは桁違いの大量のデータを使ってビジネスを成長させる』のであれば、その大量のデータのことを、『ビッグデータ』と呼んでしまって問題ないということになるでしょう。ビッグデータと従来型のデータの違い『従来よりデータの量が多ければビッグデータと呼ぶのか?』と疑問に思った方もいらっしゃるかもしれません。しかし、従来型のデータがただ多いだけでは、ビッグデータと呼べるわけではないのです。そもそもそれは先ほど申し上げたように、どのくらいの量以上でビッグデータと呼ぶなどの決まりがないこともありますが、ビジネスや、事業に役立つ大量のデータをビッグデータと呼ぶわけで、該当するデータが量的・質的にビジネスに何らかのメリットをもたらさなければ、ビッグデータとはなりません。要は、ビッグデータとじゅうらいがたのデータでは、量的・質的に異なるということになります。主な違いは下記のようになります。<従来のデータとビッグデータの違い>項目従来型データビッグデータデータ量従来の分析システムで取り扱えるよう、データ容量を合わせており、極端に巨大ということはない。具体的に「何テラバイト、何ペタバイト以上がビッグデータ」と決まっているわけではないが、扱うデータ量が今までよりも桁違いに膨大。細かさ、多様性あらかじめデータ項目を設定しておき、それに合わせてデータを入力していく。項目にないデータは記録されない(例:Excelの表)。より細かく多彩な情報が含まれる(例:検索履歴、ネットショッピングでの利用履歴、SNSへの書き込み、画像、動画など)。リアルタイム性データの収集が終わってから、定期的に分析を行うため、リアルタイム性には乏しい。ビッグデータの多くがネットを通じて収集されることが多く、データの更新や分析がリアルタイムで行われる。ビッグデータと従来のデータでは上記の表のように、『データ量』『細かさ、多様性』『リアルタイム性』などが異なってきます。また、ビッグデータはこれまでとけた違いの量や質のデータとなるわけですから、従来のような分析方法ではデータを分析することができません。というわけで、ビッグデータの解析などでは、専用のシステムを利用して分析結果を知ることになります。細かく多才なデータと、それらのデータを収集・分析するためのシステムがあって、初めて『ビッグデータ』が『ビッグデータ』として成立するということです。そしてそのようなデータの収集と分析を比較的手軽に利用できる環境が普及してきたことで、ビジネスにおいても利活用が広まってきたのです。ビッグデータの活用例では、実際に、ビッグデータはビジネスにおいてどのように活用され、どのようなメリットが得られるのかという点について見ていきましょう。スーパー・コンビニなどスーパーやコンビニなどでは現在、Aiシステムを利用した無人化などが図られている成長中の市場でもあります。無人化はもちろん、セルフレジなどの導入により、デジタル化が図られていることもあり、Aiシステムやデジタルシステムと連動して顧客の行動を分析し、売り場を効率化することができるようになるでしょう。具体的には店内に顧客の動きを分析するセンサーを設置し、そのデータを分析。顧客がどの陳列棚に手を伸ばす回数が多いか、店員の配置によって売り上げがどう変わるかなどを分析することができます。また、売れやすい商品の補充タイミングなども分析できることで、効率的に店舗運営を行うことも可能です。金融機関金融機関では、例えばTwitterなどのSNSへの投稿を分析して顧客へ情報を提供することができるようになります。Twitterのつぶやきは、意外にも株式市場に関する重要なツイートが隠れているものです。というのも、例えば、Twitterでつぶやかれている頻度の高い企業名、商品名を抽出し、話題になっている商品やサービスを発見することで今後の株価上昇を予測し、金融機関や個人投資家に情報を提供することができるというわけです。このようなSNSからの分析に関しては、金融機関に限らずアパレルメーカーでも利用でき、SNSでトレンドを分析することで、お客のニーズに合った商品を開発することができるようになります。飲食メーカー自動販売機を利用する際、お客がどの商品を選ぶかなどの分析に、自動販売機自体に監視カメラが取り付けられており、お客の行動を分析されているのをご存知でしたでしょうか?その監視カメラの映像から、どの位置に一番視線が集まるのかを分析し、その位置に売りたい飲料を配置することで、自動販売機の売り上げアップにつなげているのです。これは自動販売機に限らず実店舗も同様で、入店してからお客がどのように行動するのかを分析することで主力の商品を効率的な位置に配置することができるようになります。宅配業者宅配業者における受取人の不在による再配達問題は、現在社会問題として取り扱われております。そうした中、ビッグデータを活用することで、伝票に記載された配送先情報を分析し、どの時間帯に不在が多いかなどを把握することができるようになります。そうすることで、再配達業務を削減し、結果的に業務効率化につなげることができるようになります。これは、配達業者だけでなく、タクシー業者も同様のビッグデータを活用し、タクシーの利用の回転率を向上させたりすることが可能です。まとめこのように、『ビッグデータ』とは具体的な定義はないものの、ビジネスの変革のために、関連するあらゆるデータを分析、解析することです。今後ビジネスにうまくビッグデータの活用を取り入れていくことで、業務効率化、人件費の削減など様々な面で恩恵を受けることになるでしょう。今回ご紹介した事例は一部にすぎません。何事も今後の在り方を変えていくという場合には、過去からリアルタイムまでの膨大なデータを収集しなければ、効果的な分析を行うことはできないのです。ビッグデータの活用で、新しいビジネスの在り方を検討してみてはいかがでしょうか。
-
Aiトレンド・特集
【新型コロナ対策】Aiサーモグラフィーで異常体温を瞬時に検知!
現在世界中で猛威を振るっている新型コロナウイルスの感染拡大の影響で、多くの人が集まる店舗や施設、公共交通機関などにおいては、検温を実施しているところも多いでしょう。実際にUNIQLOやGUなどのアパレルショップへ入店する際は検温が実施され、37.5℃以上の発熱がある場合は入店を断られるという仕組みになっていました。また、美術館や大型しょっぴんモールなどでは、Aiカメラの前を通る人々の体温を瞬時に検知し、電子ディスプレイ上に映し出しているという施設もあり、検温の動きが広がってきています。新型コロナウイルスへ感染した時の症状の一つとして発熱があることから検温がクラスター化させないための一つの指標となっているわけです。本記事では、新型コロナ対策において瞬時に多くの人々の検温ができるシステム『Aiサーモグラフィー』や、新しい生活様式においてAiがどのように活躍するのかという話題に視点を置き、言及してまいります。新型コロナ対策で実施されたもの会社員・公務員を対象としたLINEリサーチの調査によりますと、職場における新型コロナ対策の現状は下記のようになっています。【引用元】http://research-platform.line.me/archives/34978692.html3月、2月の調査に比べると、すべての項目において対策が強化されていることがわかり、上位は『マスクの着用の推奨/義務付け』が最も高く6割となっています。次に、『手指のアルコール消毒用品の常備』が約6割弱となりました。さらに、今回3割以上かつ、前回に比べて2倍以上の増加率だったのは、『出社前の検温の推奨/義務付け』(前回16%→今回42%)です。37.5℃以上の発熱が新型コロナウイルスの主な症状の一つであり、感染を食い止めるための指標であることから施設等へ入館する際に限らずオフィスへの出勤時にも実施されるようになってきていることがわかります。Aiサーモグラフィーとは検温といいますと、現在UNIQLOやGUなどに入店する際、高速バスに乗り込む前などに実施されるのはスタッフがお客の額に体温計を当てて一人一人検温を実施するものを思い浮かべる方も多いでしょう。しかし、店舗に人がたくさん入る場合や、バスなどのように時間が迫っている場合には急ぐあまりに正しく検温ができなかったり、業務効率を悪くしてしまう可能性もあります。ひいては、お客の額に体温計を一人一人近づける作業をしているスタッフはお客との距離が一瞬ではあるものの、近くなってしまうため、あまり望ましくありません。そこで利用されるのがAiによる検温です。Aiサーモグラフィーによる検温の特徴人が人に近づいて手動で検温をするとなりますと、感染のリスクをたかめることにもなりかねません。しかし、気温や体温を測るときに利用される『サーモグラフィー』というものがあるのをご存知ですか。Aiサーモグラフィーはオフィスや商業施設など、人の集まる場所の入口に設置することで、自動的に体温を検知することが可能です。また、顔認証AI機能も搭載されているため、予め登録した社員や来訪者の入退室管理や、発熱チェックを行うことで、検温漏れを防ぐこともできます。実際に福岡市立美術館や山口県の下関市にある海響館ではAiによる検温が行われており、福岡市立美術館に関しては電子ディスプレイ上に、個々の体温が映し出されておりました。このように、Aiサーモグラフィーによる検温では、非対面非接触かつ一度に大人数の検温をできるのが特徴です。・Aiサーモグラフィーによる検温のメリットではAiサーモグラフィーによる検温のメリットとは具体的にどのようなことがあげられるのかといいますと、一つは従業員が対面で検温を行う必要がなくなるので業務効率化につながるということや非対面での検温が可能になるという点です。二つ目は、管理者は発熱者のアラートを受け取れることで、効果的な検温活動が実施できるという点になります。学校や大型施設、公共交通機関などに設置することで、スムーズに検温を行うことができます。・Aiサーモグラフィーによる検温のデメリットしかし、Aiサーモグラフィーによる検温は、Aiを搭載したカメラを利用して行うものになりますのでカメラにキチンと映っていなかったり、後ろを向いていたりする場合は正しく検温ができないという可能性もあるのがデメリットとしてあげられるでしょう。また、クリニックや病院などにおける検温は一人一人しっかりと行う必要があるので不向きです。Aiで広がる非接触システムと新しい生活様式コロナウイルスの感染拡大が大々的にニュースなどでも取り上げられる中で、よく耳にするようになった言葉の一つに『新しい生活様式』があります。感染拡大やクラスター化などを防ぐために、リモートワークが推奨されたり、非対面・非接触を推奨されたりなど、これまでの私たちの生活と比べて、テクノロジーの利用シーンが増えてきました。Aiもそれらの技術の一つです。Aiサーモグラフィーをはじめ、人間が行っていた作業をAiシステムに任せることで人間同士が接触して感染拡大の機会を減らすことができるのです。感染症対策の一環ではありませんが、無人店舗なども同様に、Aiなどのテクノロジーを利用した非対面、非接触の買い物であり、新しい生活様式の一つとも言えます。今後はECサイトなどの活用がますます増え、Aiやその他テクノロジーを利用して非対面、非接触が推奨されていくことになるでしょう。まとめ『新しい生活様式』という言葉を至る所で耳にするようになった今、非対面・非接触でのコミュニケーションはもちろんのこと、感染拡大を阻止する検温やソーシャルディスタンスの維持の徹底においてもテクノロジーが広く利用されるようになってきています。今後はAiサーモグラフィーが設置される店舗も多くなってくるでしょうから、見つけた際には試してみてはいかがでしょうか。変わりゆく生活の中で、新しいものに関心を持ち、Aiなどの最新テクノロジーにも気軽に触れていくことが今後の『新しい生活様式』において大切なことであるとも言えます。
-
Aiの基礎知識
【機会学習とは】3種類の学習方法や使い分け、5つのアルゴリズムにも注目!
Apple製品の代名詞と言えば、やはり「iPhone(アイフォン)」ですよね。このiPhoneですが、「Siri(シリ)」による音声コントロールに始まり、顔認証技術の「Face ID(フェイスアイディー)」や、指紋認証システムの「Touch ID(タッチアイディー)」など、実はAiの技術を結晶した製品だということをご存知でしょうか。今回は、Aiにおける基礎知識として「機械学習」にスポットをあてて、その種類やそれぞれの学習アルゴリズムなどについてをわかりやすく解説し、Siriが私たちの顔や声を正確に認識できる謎に迫っていきましょう。機械学習とはAiは、入力された膨大なデータを瞬時に学習・分析することで、それらのデータ群に内在する共通項や規則性を発見し、最適な回答を見つけ出したり、カテゴリ別に分けることなどを得意としています。こうしたAiによる一連の学習活動を「機械学習」と呼び、この機械学習には、入力するデータのタイプや環境状況に応じて、主に3つの種類が存在します。機械学習の3つの種類①教師あり学習教師と言うと学校の先生などをイメージするかもしれませんが、Aiの分野における教師とは「正しいデータ(=以下、正解データ)」を意味する言葉となります。コンピュータに対して大量のデータと一緒に正解データを入力することで、コンピュータは入力データと正解データそれぞれのデータの特徴を読み取ります。この学習を繰り返すことで、コンピュータは入力されたデータのうち「どのデータが誤りで、どのデータが正しいか」を正確に判断できるようになるのです。②教師なし学習教師なし学習とは、先ほどの教師あり学習とは異なり、膨大な正解データの分析を必要としない入力データのみの学習パターンになります。正解データを学習しない代わりに、膨大な入力データそれぞれが持つ構造や特徴を分析し、カテゴリ別にグループ分けを行ったり、要素の簡略化を行ったりします。入力されたデータに対してコンピュータ自身がそれぞれのデータの共通項や規則性を見つけ出し、カテゴリ別に分けていく学習パターンです。③強化学習強化学習とは、簡単に言うと「コンピュータがとる行動の方針を最適化する仕組み」を学ぶという、トライ&エラー型の学習手法になります。コンピュータが良い行動をとると高い報酬を、逆に悪い行動をとると低い報酬を与えるよう行動の結果ごとに報酬の値を設定し、その報酬を「最大化」するように機械は試行錯誤を行ってくれるため、コンピュータ自身が自分の学習を強化していくことで精度を上げていくという仕組みになります。さらに現在では、この強化学習と「ディープラーニング(深層学習)」という学習手法を組み合わせた「深層強化学習(DQN)」が、強化学習の中でも主流となっています。囲碁の世界チャンピオンを倒した囲碁Ai「AlphaGO(アルファゴー)」にも、この深層強化学習が活用されています。機械学習における『教師あり学習』と『教師なし学習』の使い分け教師あり学習は、入力データと正解データをセットで読み込ませるため、ある特定の画像やテキストなどを判別する際に役立ちます。例えば、がん患者の大小さまざまな細胞画像を正解データとすることで、受診者の細胞を正確に判別することが可能になるため、がんの早期発見や早期治療に役立ちます。対して教師なし学習は、正解となるデータが存在しないため、膨大な数のデータをそれぞれの共通項に分類したり、規則性に沿ってカテゴライズする際に重宝します。これは、企業の保持している顧客データなどのビッグデータに応用することで、顧客のニーズやユーザー行動の分析が可能になるため生産性の向上に繋げることができます。このように、教師あり学習と教師なし学習それぞれにメリットとデメリットが存在するため、導入の際にはAiの利用用途を吟味した上で検討しましょう。機械学習で利用されるアルゴリズム上述した3種類の機械学習手法ですが、その中でもさらに細かいアルゴリズムによる分類が存在します。ここからは、機械学習の際に用いられる、主なアルゴリズム5つを確認していきましょう。分類(=教師あり学習)教師あり学習の一つで、「分析したい入力データが属するカテゴリーやクラスが何なのか」を判定する手法。回帰(=教師あり学習)教師あり学習の一つで、「売り上げや成長率といった数量を扱う場合の学習方法」で、過去の顧客データから新規顧客が今後どのくらい訪れるのかなどを予測することができます。クラスタリング(=教師なし学習)教師なし学習の一つで、「類似するデータ同士を機能やカテゴリごとに分けて集める」という、回帰の教師なしバージョンのような学習手法です。次元削減(=教師なし学習)教師なし学習の一つで、機械学習でも特徴量が不必要に多すぎると、いわゆる「次元の呪い」という現象が起こり、精度が悪くなることがあることから、データの次元(特徴量の数)を減らす手法になります。異常検知機械の故障やデータ分析の外れ値などのコンピュータ数値における異常を検知・推測する際に利用する手法です。■まとめ一口に機械学習とは言っても、Aiの利用目的や導入先の環境などによって適切な学習方法や採用すべきアルゴリズムは異なります。Aiの導入を検討されている場合、まずは導入の前に、自身のAi活用の目的をしっかりと確認することが重要です。そもそもAiには「何ができて何ができないのか」を深く理解することで、導入による無駄な工数の発生やリスクを回避することにも繋がるでしょう。
-
Aiの基礎知識
【Aiとディープランニングの関係性】深層学習について知っておくべき3つのこと
Ai(人工知能)による機械学習機能の一つとして広く知られるようになった「ディープラーニング(深層学習)」ですが、近ごろではニュースやバラエティ番組など、さまざまな場面で耳にする機会が増えました。しかし、ディープラーニングはどうして必要なのか、ディープラーニングによってどのようなことが可能になるのかなど、その仕組みや実態を正確に把握しているのは、ごく一部の愛好家や研究者だけです。今回は、ディープラーニングがこれほどまでに注目を集めている理由と、ディープラーニングについて知っておくべきポイントについて、3つの観点からわかりやすく解説していきます。ディープラーニングが注目されている理由ディープラーニングとは、コンピュータが自動的に大量のデータを読み込み、それらのデータ群の中から一定の規則性や特徴を発見する技術のことです。このディープラーニングの発達により、従来からヒトの手以外では実現不可能とされてきたさまざまな業務の「Ai代行」が実現できるようになり、近年注目を集めているというわけです。ディープラーニングが必要な理由では、今後の私たちの生活の中で、Aiによるディープラーニングが必要不可欠なものとされている理由は一体どのようなところにあるのでしょうか。それを語る上で欠かせないキーワードが、Aiそのものの「高速化」と「高精度化」です。近年、ディープラーニングは、コンピュータ技術の進歩とネットワーク通信技術の発達により、かつてないほど大規模かつ高速な処理能力を有するようになりました。また、画像や音声の認識においては、もはや人間の能力を超えるレベルにまで到達しており、日々その進化を遂げています。技術革新による「高速化」と「高精度化」が実現したことで、従来までは不可能とされていたあらゆるタスクの処理が可能となり、医療や農業、製造業や接客業など、さまざま分野において、その活躍が期待されるようになりました。Aiとディープラーニングの関係Aiとは「Artificial intelligence(アーティフィシャル・インテリジェンス)」の略で、日本語では「人工知能」と訳します。あらかじめ何らかのプログラムを施さなくても、コンピュータに大量のデータを学習・分析させることで、自動的に法則性やルールを発見して、ある課題に対する予測や判断を下すことができる技術のことを指します。こうしたAiによる一連の動作は、一般に「機械学習」と呼ばれ、その中でも特に、より深く複雑な情報処理を得意とする領域が「ディープラーニング」と呼ばれ、日本語では「深層学習」の名前で知られています。ここからは、ディープラーニングについて知っておくべき3つのポイントについて、わかりやすく解説していきます。ディープラーニングについて知っておきたい3つのことディープラーニングの仕組みそもそもディープラーニングとは、「ニューラルネットワーク」と呼ばれるヒトの脳神経(ニューロン)の構造を模した思考プロセスをベースに設計された技術です。ニューラルネットワークとは、入力層、隠れ層、出力層の順番で、入力された情報に対しての回答を行うシステムになります。しかし、シンプルなニューラルネットワーク構造では単純な情報しか処理できないため、より複雑な情報処理を行うために層の数を増設したもの(=多層化したもの)を「ディープニューラルネットワーク」と呼びます。ディープラーニングは、こうしたディープニューラルネットワークの技術を採用することで、今までの機械学習よりも分析精度を飛躍的に向上させることに成功しました。ディープラーニングの活用の仕方ディープラーニングが得意とするタスクはさまざまですが、代表的な例としては下記の4つが挙げられます。【画像の認識】膨大な画像データを学習させることで、その画像が何の画像であるのかを判断することができます。【音声の認識】対象の音声データを学習させることで、その音声が誰のものであるのかを認識することができます。【文章や言語の理解】文章や言語を大量に学習させることで、文脈から文法などの規則性を発見し、中身の内容を理解することができます。【未来の予測】過去にある膨大な事例を参照することで周囲の環境や状況を分析し、ある事柄における未来の予測を打ち立てることができます。ディープラーニングでできること例えば、ディープラーニングを自動運転の分野に応用することで、各種標識や歩行者の検知を高速かつ正確に行うことができるため、事故の減少に繋げることができます。医療研究の分野においては、がん細胞の発見にディープラーニングを用いることで、より高速かつ確実にがん細胞を検出することが可能になりました。これまで、人間の医師では気が付かなかったような微妙な細胞の変化を検出できるようになったため、がん細胞の早期発見と早期治療へ役立てることができるのです。ディープラーニングの活用事例Googleの活用事例Aiによるディープラーニングの技術はすでに幅広い分野で実用化され、私たちの生活を支えています。例えば、Google(グーグル)が提供している「TensorFlow(テンソルフロー)」は、深層学習のために設計されたニューラルネットワークソフトウェアで、オープンソースとなっているため誰でも無償で利用することができます。https://www.youtube.com/watch?v=XkKxSAb4EAw上記の動画では、膨大な画像データをディープラーニングさせることで、農作物の仕分けの自動化と農場における業務負荷の軽減に成功しています。Amazonの活用事例また、Amazon(アマゾン)が手がけるショッピングストア「Amazon Go(アマゾン・ゴー)」では、機械学習されたAiカメラを店舗内に設置することによって、レジを利用した従来の決済システムを廃し、完全無人化の実現に成功しました。https://www.youtube.com/watch?v=NrmMk1MyrxcAi技術を駆使することで、わずらわしいレジでの待ち時間をなくすとともに、店舗における従業員不足の解消や人件費などのコスト削減に繋がるとして注目を集めています。まとめ生活に広く浸透するようになったAiテクノロジー。昨今では、Aiが人間のもつ知能レベルを大幅に超える「シンギュラリティ問題」や「2045年問題」などが指摘されるようにもなりました。便利な技術である反面、運用を間違えてしまうと人類にとって未知の危険を及ぼす可能性があるとも言えるでしょう私たち一人一人がAiに関する知識と理解を深めることで、社会全体におけるITリテラシーの向上が必要になっているのかもしれません。
-
Aiトレンド・特集
【Ai活用法】ビジネスにおいてAiはどのように活躍している!?Aiの活用事例9選
近年、Ai技術の参入によって、ますます複雑化と高速化の波が押し寄せるマーケティングの分野ですが、Aiのビジネス活用がこれほどまでに重要視されている理由は、一体どのようなところにあるのでしょうか。本記事では、ビジネスにおけるAiの具体的な活用事例をご紹介していくとともに、今後のデジタルマーケティングの動向についてもわかりやすく解説していきたいと思います。Ai活用がビジネスで重要化している理由少子高齢化が加速する現代の日本においては、企業の人材不足にともなう長時間労働などの、いわゆる「ブラック企業問題」が社会的なテーマとして大きく取り上げられるようになりました。こうした諸々の経営課題を一挙に解決させる手段として、近年注目を浴びるようになったのがAiという存在です。実際にAiを導入した企業の中でも、業務の効率化や労働環境の改善に成功したという事例は数多く報告されていますが、例えばウェブサイトの運営にAiを活用した場合は、アクセス解析機能でサイトの改善点を瞬時に提案してくれたり、ユーザー行動の分析を通して顧客のニーズを把握してくれたりと、ビジネスにおける諸問題を解決していく上でもAiという存在は今後ますます必要不可欠なものになっていきます。ここからはより具体的に、ビジネスにおけるAiの活用事例をシーン別に分けて9つほどご紹介していきたいと思います。ビジネスにおけるAi活用事例ユーザー体験の向上ネット通販やオンラインショッピングなどで洋服や靴を購入しようと思ったとき、なかなか自分のイメージする商品が見つからずに苦労したという経験がある方も多いのではないでしょうか。アパレルブランドの各社ECサイト(=商品の販売を目的とするウェブサイト)で導入されている画像検索システム「Syte(サイト)」は、株式会社ギャプライズが提供するAi搭載型の画像検索エンジンです。使い方はシンプルで、ユーザーが自分好みの洋服の画像をアップロードすると、色や形などの外観情報からその洋服の系統を瞬時に分析し、類似商品を提案してくれる画期的なAiサービスになります。テキストによる検索ではなく、画像を用いた検索手法のため、ユーザーにとってより直感的で的確な検索結果の表示が可能となりました。スペインを代表する大手ファッションブランド「Venca(ヴェンカ)」では、このビジュアル検索Aiの導入後、コンバージョン率が3.8倍も向上したという報告も上がっているほど、信頼性の高いAiツールです。Aiで市場データを分析商品に対するユーザーレビューやSNSにアップされた口コミなどにAiの感情分析機能を活用することで、顧客ニーズの把握などの市場データの分析に役立てることができます。Aiの感情分析機能とは、入力されたテキストからユーザーの快不快の感情を分析し、スコアリング(=数値化)する機能のことです。数百から数千件にもおよぶ膨大なユーザー投稿を人間が手作業で分析するというのは、あまり現実的ではありませんよね。こうした作業にAiを用いることで分析時間を短縮することできますし、最近ではテキストだけではなく、音声や表情の認識技術を利用してユーザーの感情を分析できるサービスも登場しています。Aiによるテキスト要約インタビューの文字起こしや長時間にわたる会議の議事録作成など、手間のかかる単純作業にはAiによるテキスト要約機能を活用しましょう。音声データのテープ起こしはもちろんのこと、重要な部分を簡潔にまとめてくれるテキスト要約サービスも登場しているため、こうした作業を頻繁にされている方であれば、積極的に利用していきたいですね。Aiによる営業社外での商談における具体的な会話の内容など、ブラックボックス化しやすい営業活動を可視化させ、コンバージョンアップに繋げることができるAiツールが注目を集めています。こうしたサービスは一般に「SFA(Sales Force Automation)」と呼ばれる営業支援Aiシステムで、営業活動の自動化を目的として顧客データの管理や営業担当者のマネジメントなど、私たちに代わって幅広い業務を自動的に行ってくれます。Aiが自動的に確度の高い見込み客をリストアップしてくれたり、担当者ごとの営業活動を可視化して改善点の提案や商談へのアドバイスをしてくれたりと、生産性の向上が期待できるでしょう。Aiによる株価予測株式投資によって資産を運用されている方は多いなか、近ごろではAiによる株価予測システムが登場し、大きな話題を呼んでいます。株価予測システム「Phantom株価予報AIエンジン」は、Aiを搭載した株価予測システムで、その的中率は80%を超えるとも言われています。将棋や囲碁のAi棋士と同様に、株式投資における膨大な勝利データの深層学習(=ディープラーニング)を通して、特定銘柄の将来株価を予想したり、空売りや押し目買いのタイミングまで的確に提案してくれたりと、熟練のトレーダーと比べても勝るとも劣らない優秀なAiツールです。Aiを搭載した会計ソフトの活用毎月の経費計算や決算の報告など、企業にとって必要不可欠な会計ソフトという存在ですが、最近ではAi搭載型の会計ソフトの登場によって業務の効率化と省人化によるコスト削減が進められています。会計ソフトはAiとの相性が良く、領収書やレシートなどの書類の読み取り機能や自動仕訳機能、さらには機械による決算チェックのため、人為的なミスが発生しにくく正確性が高いというメリットがあります。製造業での不良品検知食品工場の生産ラインや農業仕分けの分野においては、良品と不良品それぞれの大量の画像をAiカメラに読み込ませることで品質管理の自動化に成功しています。Google(グーグル)の開発する「TensorFlow(テンソルフロー)」は、機械学習のために設計されたオープンソースソフトウェアで、法人個人を問わず無償で利用することができます。https://www.youtube.com/watch?v=XkKxSAb4EAw製品の良し悪しを人間が正確に見分けられるようになるためには、長年にわたる業務経験と専門的な知識が必要になってきますよね。しかし、こうした仕分け作業にAiの画像分析技術を用いることで、製品の判別を迅速かつ的確にこなしてくれるため、生産現場における人員不足の解消とスタッフの業務負荷の軽減に繋げることができます。無人店舗でのAiカメラAmazon(アマゾン)が運営する無人小売店舗の「Amazon Go(アマゾン・ゴー)」は、店舗内にAiカメラを設置することによって、決済システムの簡略化を始めとする完全無人化を実現しました。Aiカメラを導入することで、商品在庫が少なくなった場合には商品の補充を促したり、不審人物を検知した際には自動的に通報したりなど、店舗運営における業務効率化を見込むことができます。また、購買層の年齢や性別、滞在時間やリピート率などの顧客データの収集も得意としているため、マーケティング戦略を立てる上でも力強い見方となってくれるでしょう。サイバーセキュリティ―を強固にするAi新型コロナウイルスの定額給付金をめぐる詐欺サイトの多発が大きな社会問題となりましたが、近ごろではこうした詐欺サイトへの対抗策としても、Aiテクノロジーが活用されていることをご存知でしょうか。詐欺サイトや違法サイトはその性質上、サイトアドレス(=URL)が頻繁に変更されてしまうため、犯人の追跡や特定に時間がかかる傾向にあります。そこで、Aiツールが常時インターネット上の詐欺サイトを監視することで、アドレス変更があった際には自動追尾してくれるため、サイバーセキュリティの分野においても活躍が期待されています。Aiでビジネスチャンスがつかめる可能性もこのように、Aiを活用することで、顧客データの収集から消費者行動の分析まで、実に様々なデータ群の解析が可能となりました。とりわけ、これまでヒトの手だけでは管理しきれなかった「ビッグデータ(=膨大な数の顧客データや蓄積したユーザー行動)」が、Aiの普及によって瞬時に解析できるようになったため、これまで取り扱いに困っていた様々なデータ群から新たなビジネスモデルを発掘したり、私たちが見落としていた消費者ニーズの発見に役立てることができるかもしれません。まとめ現代経営学の父と呼ばれるピーター・ドラッカー氏は、マーケティングのゴールを「販売を不要にすること」と述べています。この発言の骨子は、従来からある一連のマーケティングフロー(=企画・営業・販売・CSなど)を徹底的に分析し、いわゆる「モノが売れる仕組み」を確立させることで、販売の自動化を目指すというところにあるのですが、Aiの台頭によってこうした構想がますます現実味を帯びるようになりました。マーケティング戦略の見直しやコンバージョンアップを検討されている方などは、今回ご紹介したAiの活用事例を参考に、商品サービスへのAi導入も是非一度、検討してみてはいかがでしょうか。
-
Aiトレンド・特集
Aiロボットがすでに活躍している分野はどんな分野!?Aiロボット活用の10選
昨今、新型コロナウイルスの感染拡大にともなって、さまざまな業界分野で非接触型のAiロボットを活用した業務効率化が注目を集めています。今回は、実際にAiロボットが活躍している業界10種を、その具体的な導入事例とともにわかりやすくご紹介していきます。AiロボットとはAiロボットとはその名が示す通り、Ai(=人工知能)を搭載したロボットのことを指します。あらかじめロボットに対して何らかのプログラムを入力しなくても、目的(=ゴール)を人間が設定してあげるだけで、Aiがその目的に向けてトライ&エラーを繰り返し、自動で最適な回答を探し出してくれる機械学習(=ディープラーニング)を得意としています。そんなAiテクノロジーですが、実は私たちが日々こなしている多くの業務との相性が良く、近ごろではさまざまな分野で応用されるようになってきました。Aiロボットが活躍している分野ここからは、各業界で活躍しているAiロボット10選を、導入事例などとともにわかりやすく解説していきます。農業農業の課題をITの力で解決する「AGRIST株式会社」日本の農業全体における就業人口は、昭和60年と比較するとおよそ4割程度の335万人ほどとなっており、年々減少傾向にあります。また、農業従事者の平均年齢は67歳とも言われており、後継者不足や生産ノウハウの消失など、人材の確保と高齢化への対策が急務となっている分野になります。そんな逆境の中で、Aiテクノロジーを駆使して日本の農業課題を解決しようと取り組んでいる企業が、宮崎県児湯郡(こゆぐん)に拠点を構える「AGRIST株式会社(以下、アグリスト)」です。アグリストは、Ai搭載型の自動収穫ロボットを活用し、収穫にかかるコストや労働負荷の低減を目指すとともに、農業の担い手不足の解決に向けて積極的なチャレンジを行っています。また、クライアントの農家の意見を取り入れながらハードとソフトの両方を農場で設計するため、より実用的でユーザーファーストな製品づくりを可能にさせています。製造業片手だけでルービックキューブを解く「dactyl」OpenAIが開発している「dactyl(以下、ダクティル)」は、ヒトと同じ5本の指を備え持つAiロボットハンドです。ルービックキューブを片手で解くことができるほど、手先が器用なロボットハンドであるため、半導体や基盤回路の製造などの繊細な作業が要求される製造業において注目を集めています。飲食業おかずの盛り付けだってAiロボットにおまかせ「Foodly」人型協働ロボット「Foodly(以下、フードリー)」は、株式会社アールティが設計するお弁当のおかず盛り付けロボットです。フードリーは、従来より自動化が難しいとされてきた、Aiによるお弁当のおかず盛り付け作業を、ヒトと隣り合わせで行うことができる協働型のAiロボットになります。業界初の「不特定物のばら積み取り出し機能」の実現によって、工場ライン全体の従業員コストの削減、人材教育、品質管理、業務の効率化などの面において幅広く貢献しています。医療Aiを搭載した介護支援ロボット「Aeolus Robotics」サンフランシスコで生まれた「Aeolus Robotics(以下、アイオロスロボ)」は、Aiを搭載した人型介護支援ロボットです。このアイオロスロボは、頭部のメインカメラからヒトやモノを検知したり、左右2本のアームで指示されたモノを持ち運ぶことが可能な汎用型のロボットです。介護の現場におけるさまざまな指示に対応できるよう、柔軟で臨機応変な設計が施されている点が魅力でしょう。物流ニトリも導入した自動搬送ロボット「Butler」オンラインショッピングの需要の拡大にともない、物流倉庫の現場では業務フローの自動化や業務効率の向上が急がれています。家具メーカーであるニトリの倉庫内で運用されている「Butler(以下、バトラー)」は、株式会社ホームロジスティクスが設計したAi搭載型の自動ピッキングロボットです。https://www.youtube.com/watch?v=l446cwpqADsサーバーから受信した顧客の注文内容に沿って倉庫内の商品を自動的に運搬してくれる画期的な運搬ロボットで、作業効率が4.2倍に上昇したという報告も上がっています。バトラー内部には赤外線センサーが搭載されているため、ヒトやモノを走行中に検知することができ、倉庫内の間取りを自動的にマッピングして自律的に動きまわることが可能です。ホテルハウステンボスのロボット接客ホテル「変なホテル」長崎県のハウステンボス内に位置する「変なホテル」は、「ワクワクと心地よさ」をコンセプトに、先端技術をふんだんに導入して建てられた世界初のロボットホテルです。大手旅行代理店エイチ・アイ・エスの子会社が手がける「変なホテル」の最大の特徴は、ホテル内のメインスタッフが全てAiロボットであるという点です。ロビーでのチェックインから、室内のルームサービスまで、Aiロボットが全自動でサポートしてくれる名前の通りの「ちょっと変わった」面白いホテルです。警備可愛い見た目と高度なセキュリティ「ugo」ミラ・ロボティクスが開発する「ugo(以下、ユーゴー)」は、オフィスビル警備などのビルメンテナンス業界で注目されている次世代型の警備アバターロボットです。アバターロボットとは人間が遠隔で操縦できるロボットのことで、本体に内蔵されたカメラからビルの中を確認することができます。本体に搭載された2本のアームでエレベーターを呼び出し、各階の警備をしたり、Aiによる学習機能で頻繁に利用する定型動作を自動化することができます。建設清水建設の次世代建築生産システム「シミズ・スマート・サイト」清水建設が長年に渡って培ってきた建設技術ノウハウを最先端の科学技術に結晶させた「シミズ・スマート・サイト」は、建物の3Dモデリング技術(=BIM)とAiテクノロジーとを融合させた自律型の建設支援ロボットです。かなり大規模な「3Dプリンターのような機械」と説明した方がイメージが湧きやすいかもしれません。人間にとって負荷の大きい重労働や繰り返し作業などを、Aiが自分で判断し、自分で作業を行ってくれるという自律型の建設支援ロボットになります。接客もはや説明不要のAiロボットの代名詞「Pepper」ソフトバンクが提供する人型Aiロボット「Pepper(以下、ペッパー)」ですが、最近では病院の待合室やファミレスの受付など、多くの場所で目にする機会が増えたのではないでしょうか。ヒトへの接客が得意なペッパーですが、近ごろでは教育、医療、福祉など、ベースシステムの優秀さから、さまざまな分野での活躍が期待されています。観光多言語でのコミュニケーションに対応したAi接客システム「AIさくらさん」ティファナドットコムが開発した「AIさくらさん」は、音声やテキストを用いて、社内ヘルプデスク、コールセンター業務、インバウンド接客など、さまざまな業務をヒトに変わって行ってくれる多言語対応Aiアシスタントサービスになります。最近ではサーモグラフィーカメラを搭載することで非接触での検温機能を搭載するなど、病院や施設エントランスでの活用が注目されています。Aiロボットは今後必須になるのか非常に便利なAiロボットですが、導入によって全ての工程をいきなり自動化してしまうと、かえってフォローが必要になる場合があり、作業効率を悪化させてしまうという危険性があります。導入の前に、まずは全体の業務フローをしっかりと理解し、どの部分がボトルネックになっているのかを把握することで、ヒトが行った方が良い作業なのか、それともAiで自動化した方が良い作業なのかを判断しましょう。適材適所という言葉の通り、ヒトが得意とするところとAiが得意とするところはそれぞれ異なるため、Aiの導入によって現状の抱えている課題が本当に解決できるのか、まずは適切に吟味することが重要です。まとめ私たちの生活に広く溶け込むようになった人工知能の技術。Aiを導入することで得られるメリットは、作業の効率化、人件費の削減、業務フローの単純化など、その恩恵は計り知れません。しかし、十分な検討なしに導入してしまうと、かえって業務効率の悪化を引き起こしてしまったり、工数を増加させてしまったりという懸念点があることも事実です。ヒトとAi、それぞれの得手不得手をしっかりと理解し、互いに共生できる社会の実現を目指していくことが大切になってくるでしょう。
-
未分類
アニメの絵をAiが描くシステムが登場!アニメーターの仕事はどうなるのか
長年、アニメ制作におけるイラストは、アニメクリエイターの手によって描かれてきました。それが近年ではアニメ制作においてCG等だけではなく描画においてもAiが利用されるようになってきています。しかし、Aiといっても機械です。機械が何かを創造するというのは予想がつきにくいと思いませんか。そこで今回は、アニメの絵を描画するAiアニメクリエイターについて詳しく解説していきたいと思います。Aiアニメクリエイターの仕組みとはそもそも、Aiとはこれまでのコラムでも何度かご説明してきたように、学習材料となる画像や動画などのデータがあれば、すべてを瞬時に読み込み、それらを学習することで新たなモノを作り出すことができます。Aiによるアニメクリエイターも同様に、人の手書きの描画をもとにAiがアニメとして着色したり、動きを加えたりなどして仕上げていくのです。特に、シンガポールで開発されたアニメーション制作ソフト『CACANi』は、原画となる絵を人間が描くだけで、アニメの中で連続する『間の動き』の部分おw自動的に生成することができます。アニメ業界では中割と呼ばれる動きの連続性の部分を埋めていくことができるというわけです。この『CACANi』は日本のアニメ界でも2010年ころから導入されており、活躍しています。『炎炎ノ消防隊』や『あんさんぶるスターズ!』といった人気作品にCACANiの名前がクレジットされることに気付いていた人もいらっしゃるのではないでしょうか。これらの作品の一部にCACANiの技術が活用されています。更には、日本の企業でもAiを活用したアニメ制作が行われており、大部分は『CACANi』と同じで中割の部分と彩色の部分を担当することになっているようです。アニメーション作成にAiを活用するメリット現在、多くの業界で人手不足という問題がささやかれていますが、もちろんアニメーション業界も例外ではありません。特にアニメ制作においては一つのアニメを制作するのに多大なコストが必要であるとされています。それは他の映像作品と比べて絵を描く部分で人員と時間的コストがどうしても多くかかってしまうからです。アニメ制作の予算は『人×時間』で大きく左右され、『人件費の塊』と揶揄されることもあります。そこで、アニメーション制作においてAiを活用し、自動化できる部分と人の手を加える部分と分けてうまく利用することで、人件費や製作時間を大幅に削減することができるようになると期待されています。Aiにできるのは『名アニメーター』のトレースのみ?しかし、このようなアニメ制作におけるAiの活用で問題になってくるのはそもそもの、アニメの中で連続する動きを生成する際の『最初』と『最後』の部分を描くアニメーターがいなければならないという点です。さらに、Aiにより良いアニメーションを自動で作成できるようにするためには、技術を持った名アニメーターの画像等を大量に学習させる必要があります。言ってしまえば、素人の絵をいくらAiに学習させても、Aiが自動で仕上げるアニメは素人でしかありません。というのも、AIは与えられたデータから最適解を見つけ出すことはできるが、AI自体が創造性を生み出せるわけでないからです。・大量の名アニメーターの画が必要そうすると、Aiにより創造性のあるアニメ―ションを自動で作成することができるように『教育』するには名アニメーターの作画データが大量に必要になってきます。そしてそれらの大量のデータをAiがディープラーニングすることによって、特徴的な動きなどをとらえることができるようになっていくのです。しかし、そもそもこの『大量の作画データ』はどこにあるのか、どのようにして収集するのか、というのが問題になってくるでしょう。そしてそれをAiに読み込ませる時間的コスト等もかかってくるとなると、Aiを導入した後、費用的コストの採算が合うかどうかはしっかりと検討しなければなりません。Ai導入でアニメクリエイターの仕事はどう変わるのか近年では多くの産業の生産性向上としてAi導入が盛んになってきていますが、効率化を目指すあまり、既存の労働者の仕事を奪ってしまうといったことにもなりかねないというリスクが叫ばれています。ただ、アニメ制作においてAiが人間の仕事を奪うかそうでないかといえば、そうではありません。というのも、『CACANi』のように、現段階ではもととなる絵や、複雑なキャラの動きは人間が描くしかないからです。つまりAiができることといえば、着色や、単純な動きやルーティン的な動きの描写のみであるというわけです。簡単な作業をAiシステムに置き換えることができれば、時間と手間のかかる難しい作画の描写や、創造性が必要な仕事にアニメーターが打ち込むことができるようになるといったメリットもあるでしょう。・現段階でAiに独創性や創造性はない更に、従来から絵作りはアニメ―ターのクリエイティビティや技能に依存していることから、デジタル化やシステムに置き換えるといったことは難しいとされてきました。クリエイティブ自体はAiのような自動化のシステムだけでは生み出すことができません。そしてアニメーションは、そもそも創造性を基盤とした表現ですので、単に絵を動かすだけでなく、現実には存在しないキャラクターやメカニック、美術、アニメーションの動き、演出、世界観が観る人々を感動させます。全てゼロから生み出す創造性こそが作品の基盤にあるというわけです。ただ、近年では1から音楽を作ることができるAiが出てきているなど、多くのデータを学習したことによって高度な技術を持ち合わせているAiも登場し始めています。現段階ではアニメーション作成においてAiに独創性や創造性はないとされていますが、今後はAiが1からアニメを制作し、人間が手直しをするといったアニメも登場してくるかもしれません。まとめ今回は、Aiとアニメクリエイターの今後について解説いたしました。従来から芸術などのクリエイティブな能力が必要な仕事についてはデジタル化することはできないとされてきましたが、少しずつこうした業界にもITが侵食してき始めています。現段階では、Ai自体に独創性や創造性がないとされているため、単純な作業をAi、重要な作業を人間という風な割り振りを行っていますが、今後Aiの技術が進歩した際はこれ限りではなくなる場合ももちろんあります。そうなったときに、人間は、どの部分をAiに任せて、どの部分を人間が行えばより効率的でより良いものが作成でき、どちらもにも悪影響を及ぼさないかなどを考えていかねばなりません。Ai技術が発達して人間の生活や仕事が効率化されるのは結構なことですが、アニメーションもしかり、人間とAiがうまく共存していくには役割分担が重要な分岐点となるでしょう。
-
Aiトレンド・特集
デジタルマーケティングにおいてAiはどのように活躍する?
先日、除湿器を購入しようとインターネットで「除湿器 オススメ 安い」と検索をしたところ、その日からインターネットを利用するたびに大量の除湿器の広告が表示されるようになってしまいました。こうしたウェブ広告は「ディスプレイ広告」と呼ばれ、ユーザーの検索履歴に基づいて、興味のありそうな商品をAiが自動的に選定し表示させる広告機能です。今回は、このようなデジタルマーケティングにおけるAi導入の可能性と、そのメリットやデメリットについてご紹介いたします。デジタルマーケティングとは?そもそも「マーケティング」とは、商品サービスの企画から開発、販売、分析改善などのあらゆる企業活動を指し、その概念はしばし「より多くの商品が大量かつ効率的に売れる仕組みをつくること」と解釈されます。そのなかでも「デジタルマーケティング」とは、様々なデジタルメディア(Webサイト、Google広告、SNSなど)を通して行われるマーケティング手法の総称で、近年、パソコンやスマートフォンをはじめとする電子デバイスの普及にともなって、その存在が重要視されるようになりました。伝統マーケティングにはどのような問題があるのか前述のように、今やマーケティングの主流はアナログからデジタルのフィールドに移り変わろうとしているなか、従来より行われてきた伝統的なマスメディア中心のマーケティング手法(=折り込みチラシやテレビCMなど)の問題点は、一体どのようなところにあるのでしょうか。アナログマーケティングの代表例である「テレビCM」を例に挙げて、3点ほどご紹介していきます。伝統マーケティングの代表例「テレビCM」の問題点①双方向性の欠如まず一つ目として、情報発信のベクトルが企業側から消費者側への一方向のみとなり、ユーザーとの双方向な関係性を構築しにくいという点が挙げられます。加えて、「レビュー」や「口コミ」などのユーザー体験が拡散されにくいため、商品やサービスへのフィードバックが回収できず、サービスの分析や改善に時間がかかってしまいます。②膨大な広告コスト二つ目に、限られたチャンネル数のなかで貴重な放送枠を割く都合上、他のメディアと比べても放映権や制作コストなどで広告費が高騰しやすいという点です。また、せっかく莫大な広告費をかけたのにも関わらず、費用対効果がわかりにくい傾向にあるため慎重に検討する必要があり、サービスリリースまでのスピード感を損なう恐れがあります。③効果測定ができないそして三つ目は、広範囲(=マス)なユーザーに対して画一的な宣伝を行うため、何人のユーザーに対してどのくらいの効果があったのかなど、具体的な数字としての広告効果を把握しにくいという点です。Webの登場とマーケティング世界におけるインターネットの歴史は1958年に先端技術を軍事利用への転用を研究する組織が発足、その後1960年代のパケット通信の研究に始まり、今では様々な情報が国境の垣根を超えて瞬時にやり取りされるようになりました。日本でのインターネット検索サービスの歴史や広告の変化日本においての検索サービスとしては1996年4月に、国内初の商用検索サイト「Yahoo! JAPAN」がスタートし、翌年の1997年5月には、インターネットショッピングモール「楽天市場」が開始され、Webマーケティングという概念が本格的に形成されるようになります。当初はバナー広告による集客が主流とされましたが、その後はアフィリエイト広告や検索エンジンからの流入、ブログやSNSなど、Webの発展とともにマーケティングもその形を柔軟に変え、進歩を続けています。ここからは、デジタルマーケティングを語る上では欠かすことのできない、「メディアの3タイプ(=トリプルメディア)」の概要と、その特徴やメリットデメリットについて解説していきます。メディアの3つの種類①オウンドメディアオウンドメディアとは、その名の通り自社のウェブサイトやSNSアカウントのような、自身(=own)が所有しているメディアを指します。認知されるまでにある程度の時間は必要ですが、管理や運営に融通が効くため、コントロールが可能容易で、SEO(=検索エンジン最適化)がしやすいというメリットがあります。②ペイドメディアペイドメディアとは、料金を支払う(=pay)ことで利用できるメディア全般のことで、いわゆる宣伝広告を指すメディアチャネルになります。もちろん運用には一定のコストがかかりますが、利用者数の多いメディアに広告が掲載されれば、短期間で多くのユーザーに対して認知させることができます。③アーンドメディアアーンドメディアとは、商品の販売を主目的としたものではなく、消費者の信頼を得る(=earn)ことを目的とするメディアのことで、第三者のSNSやブログなどがこれに該当します。効果の予測や測定が難しい反面、第三者による投稿は客観的な情報として信頼を得やすく、自動的な営業ツールとして機能してくれるのがメリットです。Aiや機械学習を活用したデジタルマーケティング昨今では、こうした一連のデジタルマーケティングをAiの技術を応用して取り組む企業も増えています。株式会社WACULの提供する「AIアナリスト」は、マーケティングに特化したAiツールであり、Webサイトのアクセス解析を通してサイト全体の改善点を指摘してくれます。参照:AIanalystまた、サイト分析だけではなく、接客の分野においてもAiが活用され始め、サイトを訪れたユーザーに対して自動で問い合わせや商品提案などの接客を行ってくれる「チャットボット」も広がりを見せています。デジタルマーケティングにAiを活用するときの注意点十分なデータ量が必要人工知能というものは与えられた膨大なデータを瞬時に分析することが得意ではありますが、データがない状態でゼロから何かを生むことはできません。例えば、サイト分析やコンバージョンアップにAiを利用したいのであれば、そのサイトの訪問者のうち、平均滞在時間はどのくらいか、どのポイントで離脱しているのか、などの具体的なデータの蓄積が必要となるでしょう。Aiは補助的な手段Aiはあくまでも課題を解決するための補助的な手段であって、すべてをAiに任せておけばいいという万能のものではありません。まずはAi導入の前に、達成したい目的は何なのか、作業全体で効率化したい部分を明確にし、最終的にそれらの課題はAiを導入することで改善できるのかを考える必要があります。Aiの導入そのものが目的にならないよう、現状と目的を把握したうえで導入を検討しましょう。まとめ昨今ますます広がりを見せる企業のAi導入。マーケティングから接客の分野まで実に幅広い業務を私たちの代わりにこなしてくれる便利なツールとも言えるようになってきました。しかし、改善に必要なデータ量が不足していたり、具体的な目的がわからずに導入することでしてしまうと逆に失敗してしまうケースもあります。自社のマーケティングにAiを導入しようと検討されている方は、本記事を参考にして、より適切な導入・運用をしていただければと思います。